Evaluate
\frac{63}{58}\approx 1.086206897
Factor
\frac{3 ^ {2} \cdot 7}{2 \cdot 29} = 1\frac{5}{58} = 1.0862068965517242
Share
Copied to clipboard
\begin{array}{l}\phantom{58)}\phantom{1}\\58\overline{)63}\\\end{array}
Use the 1^{st} digit 6 from dividend 63
\begin{array}{l}\phantom{58)}0\phantom{2}\\58\overline{)63}\\\end{array}
Since 6 is less than 58, use the next digit 3 from dividend 63 and add 0 to the quotient
\begin{array}{l}\phantom{58)}0\phantom{3}\\58\overline{)63}\\\end{array}
Use the 2^{nd} digit 3 from dividend 63
\begin{array}{l}\phantom{58)}01\phantom{4}\\58\overline{)63}\\\phantom{58)}\underline{\phantom{}58\phantom{}}\\\phantom{58)9}5\\\end{array}
Find closest multiple of 58 to 63. We see that 1 \times 58 = 58 is the nearest. Now subtract 58 from 63 to get reminder 5. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }5
Since 5 is less than 58, stop the division. The reminder is 5. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}