Evaluate
\frac{21}{8}=2.625
Factor
\frac{3 \cdot 7}{2 ^ {3}} = 2\frac{5}{8} = 2.625
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)63}\\\end{array}
Use the 1^{st} digit 6 from dividend 63
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)63}\\\end{array}
Since 6 is less than 24, use the next digit 3 from dividend 63 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)63}\\\end{array}
Use the 2^{nd} digit 3 from dividend 63
\begin{array}{l}\phantom{24)}02\phantom{4}\\24\overline{)63}\\\phantom{24)}\underline{\phantom{}48\phantom{}}\\\phantom{24)}15\\\end{array}
Find closest multiple of 24 to 63. We see that 2 \times 24 = 48 is the nearest. Now subtract 48 from 63 to get reminder 15. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }15
Since 15 is less than 24, stop the division. The reminder is 15. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}