Evaluate
\frac{627916}{31}\approx 20255.35483871
Factor
\frac{2 ^ {2} \cdot 156979}{31} = 20255\frac{11}{31} = 20255.354838709678
Share
Copied to clipboard
\begin{array}{l}\phantom{31)}\phantom{1}\\31\overline{)627916}\\\end{array}
Use the 1^{st} digit 6 from dividend 627916
\begin{array}{l}\phantom{31)}0\phantom{2}\\31\overline{)627916}\\\end{array}
Since 6 is less than 31, use the next digit 2 from dividend 627916 and add 0 to the quotient
\begin{array}{l}\phantom{31)}0\phantom{3}\\31\overline{)627916}\\\end{array}
Use the 2^{nd} digit 2 from dividend 627916
\begin{array}{l}\phantom{31)}02\phantom{4}\\31\overline{)627916}\\\phantom{31)}\underline{\phantom{}62\phantom{9999}}\\\phantom{31)99}0\\\end{array}
Find closest multiple of 31 to 62. We see that 2 \times 31 = 62 is the nearest. Now subtract 62 from 62 to get reminder 0. Add 2 to quotient.
\begin{array}{l}\phantom{31)}02\phantom{5}\\31\overline{)627916}\\\phantom{31)}\underline{\phantom{}62\phantom{9999}}\\\phantom{31)99}7\\\end{array}
Use the 3^{rd} digit 7 from dividend 627916
\begin{array}{l}\phantom{31)}020\phantom{6}\\31\overline{)627916}\\\phantom{31)}\underline{\phantom{}62\phantom{9999}}\\\phantom{31)99}7\\\end{array}
Since 7 is less than 31, use the next digit 9 from dividend 627916 and add 0 to the quotient
\begin{array}{l}\phantom{31)}020\phantom{7}\\31\overline{)627916}\\\phantom{31)}\underline{\phantom{}62\phantom{9999}}\\\phantom{31)99}79\\\end{array}
Use the 4^{th} digit 9 from dividend 627916
\begin{array}{l}\phantom{31)}0202\phantom{8}\\31\overline{)627916}\\\phantom{31)}\underline{\phantom{}62\phantom{9999}}\\\phantom{31)99}79\\\phantom{31)}\underline{\phantom{99}62\phantom{99}}\\\phantom{31)99}17\\\end{array}
Find closest multiple of 31 to 79. We see that 2 \times 31 = 62 is the nearest. Now subtract 62 from 79 to get reminder 17. Add 2 to quotient.
\begin{array}{l}\phantom{31)}0202\phantom{9}\\31\overline{)627916}\\\phantom{31)}\underline{\phantom{}62\phantom{9999}}\\\phantom{31)99}79\\\phantom{31)}\underline{\phantom{99}62\phantom{99}}\\\phantom{31)99}171\\\end{array}
Use the 5^{th} digit 1 from dividend 627916
\begin{array}{l}\phantom{31)}02025\phantom{10}\\31\overline{)627916}\\\phantom{31)}\underline{\phantom{}62\phantom{9999}}\\\phantom{31)99}79\\\phantom{31)}\underline{\phantom{99}62\phantom{99}}\\\phantom{31)99}171\\\phantom{31)}\underline{\phantom{99}155\phantom{9}}\\\phantom{31)999}16\\\end{array}
Find closest multiple of 31 to 171. We see that 5 \times 31 = 155 is the nearest. Now subtract 155 from 171 to get reminder 16. Add 5 to quotient.
\begin{array}{l}\phantom{31)}02025\phantom{11}\\31\overline{)627916}\\\phantom{31)}\underline{\phantom{}62\phantom{9999}}\\\phantom{31)99}79\\\phantom{31)}\underline{\phantom{99}62\phantom{99}}\\\phantom{31)99}171\\\phantom{31)}\underline{\phantom{99}155\phantom{9}}\\\phantom{31)999}166\\\end{array}
Use the 6^{th} digit 6 from dividend 627916
\begin{array}{l}\phantom{31)}020255\phantom{12}\\31\overline{)627916}\\\phantom{31)}\underline{\phantom{}62\phantom{9999}}\\\phantom{31)99}79\\\phantom{31)}\underline{\phantom{99}62\phantom{99}}\\\phantom{31)99}171\\\phantom{31)}\underline{\phantom{99}155\phantom{9}}\\\phantom{31)999}166\\\phantom{31)}\underline{\phantom{999}155\phantom{}}\\\phantom{31)9999}11\\\end{array}
Find closest multiple of 31 to 166. We see that 5 \times 31 = 155 is the nearest. Now subtract 155 from 166 to get reminder 11. Add 5 to quotient.
\text{Quotient: }20255 \text{Reminder: }11
Since 11 is less than 31, stop the division. The reminder is 11. The topmost line 020255 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 20255.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}