Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

625x^{2}+1570x-10362=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1570±\sqrt{1570^{2}-4\times 625\left(-10362\right)}}{2\times 625}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 625 for a, 1570 for b, and -10362 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1570±\sqrt{2464900-4\times 625\left(-10362\right)}}{2\times 625}
Square 1570.
x=\frac{-1570±\sqrt{2464900-2500\left(-10362\right)}}{2\times 625}
Multiply -4 times 625.
x=\frac{-1570±\sqrt{2464900+25905000}}{2\times 625}
Multiply -2500 times -10362.
x=\frac{-1570±\sqrt{28369900}}{2\times 625}
Add 2464900 to 25905000.
x=\frac{-1570±10\sqrt{283699}}{2\times 625}
Take the square root of 28369900.
x=\frac{-1570±10\sqrt{283699}}{1250}
Multiply 2 times 625.
x=\frac{10\sqrt{283699}-1570}{1250}
Now solve the equation x=\frac{-1570±10\sqrt{283699}}{1250} when ± is plus. Add -1570 to 10\sqrt{283699}.
x=\frac{\sqrt{283699}-157}{125}
Divide -1570+10\sqrt{283699} by 1250.
x=\frac{-10\sqrt{283699}-1570}{1250}
Now solve the equation x=\frac{-1570±10\sqrt{283699}}{1250} when ± is minus. Subtract 10\sqrt{283699} from -1570.
x=\frac{-\sqrt{283699}-157}{125}
Divide -1570-10\sqrt{283699} by 1250.
x=\frac{\sqrt{283699}-157}{125} x=\frac{-\sqrt{283699}-157}{125}
The equation is now solved.
625x^{2}+1570x-10362=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
625x^{2}+1570x-10362-\left(-10362\right)=-\left(-10362\right)
Add 10362 to both sides of the equation.
625x^{2}+1570x=-\left(-10362\right)
Subtracting -10362 from itself leaves 0.
625x^{2}+1570x=10362
Subtract -10362 from 0.
\frac{625x^{2}+1570x}{625}=\frac{10362}{625}
Divide both sides by 625.
x^{2}+\frac{1570}{625}x=\frac{10362}{625}
Dividing by 625 undoes the multiplication by 625.
x^{2}+\frac{314}{125}x=\frac{10362}{625}
Reduce the fraction \frac{1570}{625} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{314}{125}x+\left(\frac{157}{125}\right)^{2}=\frac{10362}{625}+\left(\frac{157}{125}\right)^{2}
Divide \frac{314}{125}, the coefficient of the x term, by 2 to get \frac{157}{125}. Then add the square of \frac{157}{125} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{314}{125}x+\frac{24649}{15625}=\frac{10362}{625}+\frac{24649}{15625}
Square \frac{157}{125} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{314}{125}x+\frac{24649}{15625}=\frac{283699}{15625}
Add \frac{10362}{625} to \frac{24649}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{157}{125}\right)^{2}=\frac{283699}{15625}
Factor x^{2}+\frac{314}{125}x+\frac{24649}{15625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{157}{125}\right)^{2}}=\sqrt{\frac{283699}{15625}}
Take the square root of both sides of the equation.
x+\frac{157}{125}=\frac{\sqrt{283699}}{125} x+\frac{157}{125}=-\frac{\sqrt{283699}}{125}
Simplify.
x=\frac{\sqrt{283699}-157}{125} x=\frac{-\sqrt{283699}-157}{125}
Subtract \frac{157}{125} from both sides of the equation.