Evaluate
25
Factor
5^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)625}\\\end{array}
Use the 1^{st} digit 6 from dividend 625
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)625}\\\end{array}
Since 6 is less than 25, use the next digit 2 from dividend 625 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)625}\\\end{array}
Use the 2^{nd} digit 2 from dividend 625
\begin{array}{l}\phantom{25)}02\phantom{4}\\25\overline{)625}\\\phantom{25)}\underline{\phantom{}50\phantom{9}}\\\phantom{25)}12\\\end{array}
Find closest multiple of 25 to 62. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 62 to get reminder 12. Add 2 to quotient.
\begin{array}{l}\phantom{25)}02\phantom{5}\\25\overline{)625}\\\phantom{25)}\underline{\phantom{}50\phantom{9}}\\\phantom{25)}125\\\end{array}
Use the 3^{rd} digit 5 from dividend 625
\begin{array}{l}\phantom{25)}025\phantom{6}\\25\overline{)625}\\\phantom{25)}\underline{\phantom{}50\phantom{9}}\\\phantom{25)}125\\\phantom{25)}\underline{\phantom{}125\phantom{}}\\\phantom{25)999}0\\\end{array}
Find closest multiple of 25 to 125. We see that 5 \times 25 = 125 is the nearest. Now subtract 125 from 125 to get reminder 0. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }0
Since 0 is less than 25, stop the division. The reminder is 0. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}