Evaluate
\frac{619346}{25}=24773.84
Factor
\frac{2 \cdot 7 \cdot 13 \cdot 41 \cdot 83}{5 ^ {2}} = 24773\frac{21}{25} = 24773.84
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)619346}\\\end{array}
Use the 1^{st} digit 6 from dividend 619346
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)619346}\\\end{array}
Since 6 is less than 25, use the next digit 1 from dividend 619346 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)619346}\\\end{array}
Use the 2^{nd} digit 1 from dividend 619346
\begin{array}{l}\phantom{25)}02\phantom{4}\\25\overline{)619346}\\\phantom{25)}\underline{\phantom{}50\phantom{9999}}\\\phantom{25)}11\\\end{array}
Find closest multiple of 25 to 61. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 61 to get reminder 11. Add 2 to quotient.
\begin{array}{l}\phantom{25)}02\phantom{5}\\25\overline{)619346}\\\phantom{25)}\underline{\phantom{}50\phantom{9999}}\\\phantom{25)}119\\\end{array}
Use the 3^{rd} digit 9 from dividend 619346
\begin{array}{l}\phantom{25)}024\phantom{6}\\25\overline{)619346}\\\phantom{25)}\underline{\phantom{}50\phantom{9999}}\\\phantom{25)}119\\\phantom{25)}\underline{\phantom{}100\phantom{999}}\\\phantom{25)9}19\\\end{array}
Find closest multiple of 25 to 119. We see that 4 \times 25 = 100 is the nearest. Now subtract 100 from 119 to get reminder 19. Add 4 to quotient.
\begin{array}{l}\phantom{25)}024\phantom{7}\\25\overline{)619346}\\\phantom{25)}\underline{\phantom{}50\phantom{9999}}\\\phantom{25)}119\\\phantom{25)}\underline{\phantom{}100\phantom{999}}\\\phantom{25)9}193\\\end{array}
Use the 4^{th} digit 3 from dividend 619346
\begin{array}{l}\phantom{25)}0247\phantom{8}\\25\overline{)619346}\\\phantom{25)}\underline{\phantom{}50\phantom{9999}}\\\phantom{25)}119\\\phantom{25)}\underline{\phantom{}100\phantom{999}}\\\phantom{25)9}193\\\phantom{25)}\underline{\phantom{9}175\phantom{99}}\\\phantom{25)99}18\\\end{array}
Find closest multiple of 25 to 193. We see that 7 \times 25 = 175 is the nearest. Now subtract 175 from 193 to get reminder 18. Add 7 to quotient.
\begin{array}{l}\phantom{25)}0247\phantom{9}\\25\overline{)619346}\\\phantom{25)}\underline{\phantom{}50\phantom{9999}}\\\phantom{25)}119\\\phantom{25)}\underline{\phantom{}100\phantom{999}}\\\phantom{25)9}193\\\phantom{25)}\underline{\phantom{9}175\phantom{99}}\\\phantom{25)99}184\\\end{array}
Use the 5^{th} digit 4 from dividend 619346
\begin{array}{l}\phantom{25)}02477\phantom{10}\\25\overline{)619346}\\\phantom{25)}\underline{\phantom{}50\phantom{9999}}\\\phantom{25)}119\\\phantom{25)}\underline{\phantom{}100\phantom{999}}\\\phantom{25)9}193\\\phantom{25)}\underline{\phantom{9}175\phantom{99}}\\\phantom{25)99}184\\\phantom{25)}\underline{\phantom{99}175\phantom{9}}\\\phantom{25)9999}9\\\end{array}
Find closest multiple of 25 to 184. We see that 7 \times 25 = 175 is the nearest. Now subtract 175 from 184 to get reminder 9. Add 7 to quotient.
\begin{array}{l}\phantom{25)}02477\phantom{11}\\25\overline{)619346}\\\phantom{25)}\underline{\phantom{}50\phantom{9999}}\\\phantom{25)}119\\\phantom{25)}\underline{\phantom{}100\phantom{999}}\\\phantom{25)9}193\\\phantom{25)}\underline{\phantom{9}175\phantom{99}}\\\phantom{25)99}184\\\phantom{25)}\underline{\phantom{99}175\phantom{9}}\\\phantom{25)9999}96\\\end{array}
Use the 6^{th} digit 6 from dividend 619346
\begin{array}{l}\phantom{25)}024773\phantom{12}\\25\overline{)619346}\\\phantom{25)}\underline{\phantom{}50\phantom{9999}}\\\phantom{25)}119\\\phantom{25)}\underline{\phantom{}100\phantom{999}}\\\phantom{25)9}193\\\phantom{25)}\underline{\phantom{9}175\phantom{99}}\\\phantom{25)99}184\\\phantom{25)}\underline{\phantom{99}175\phantom{9}}\\\phantom{25)9999}96\\\phantom{25)}\underline{\phantom{9999}75\phantom{}}\\\phantom{25)9999}21\\\end{array}
Find closest multiple of 25 to 96. We see that 3 \times 25 = 75 is the nearest. Now subtract 75 from 96 to get reminder 21. Add 3 to quotient.
\text{Quotient: }24773 \text{Reminder: }21
Since 21 is less than 25, stop the division. The reminder is 21. The topmost line 024773 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 24773.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}