Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

614x^{2}=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-16}{614}
Divide both sides by 614.
x^{2}=-\frac{8}{307}
Reduce the fraction \frac{-16}{614} to lowest terms by extracting and canceling out 2.
x=\frac{2\sqrt{614}i}{307} x=-\frac{2\sqrt{614}i}{307}
The equation is now solved.
614x^{2}+16=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 614\times 16}}{2\times 614}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 614 for a, 0 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 614\times 16}}{2\times 614}
Square 0.
x=\frac{0±\sqrt{-2456\times 16}}{2\times 614}
Multiply -4 times 614.
x=\frac{0±\sqrt{-39296}}{2\times 614}
Multiply -2456 times 16.
x=\frac{0±8\sqrt{614}i}{2\times 614}
Take the square root of -39296.
x=\frac{0±8\sqrt{614}i}{1228}
Multiply 2 times 614.
x=\frac{2\sqrt{614}i}{307}
Now solve the equation x=\frac{0±8\sqrt{614}i}{1228} when ± is plus.
x=-\frac{2\sqrt{614}i}{307}
Now solve the equation x=\frac{0±8\sqrt{614}i}{1228} when ± is minus.
x=\frac{2\sqrt{614}i}{307} x=-\frac{2\sqrt{614}i}{307}
The equation is now solved.