6000 + ( 1 - 25 \% ) \times 6000 ( x - 1 ) < ( 1 - 20 \% ) \times 6000 x
Solve for x
x>5
Graph
Share
Copied to clipboard
6000+\left(1-\frac{1}{4}\right)\times 6000\left(x-1\right)<\left(1-\frac{20}{100}\right)\times 6000x
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
6000+\left(\frac{4}{4}-\frac{1}{4}\right)\times 6000\left(x-1\right)<\left(1-\frac{20}{100}\right)\times 6000x
Convert 1 to fraction \frac{4}{4}.
6000+\frac{4-1}{4}\times 6000\left(x-1\right)<\left(1-\frac{20}{100}\right)\times 6000x
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
6000+\frac{3}{4}\times 6000\left(x-1\right)<\left(1-\frac{20}{100}\right)\times 6000x
Subtract 1 from 4 to get 3.
6000+\frac{3\times 6000}{4}\left(x-1\right)<\left(1-\frac{20}{100}\right)\times 6000x
Express \frac{3}{4}\times 6000 as a single fraction.
6000+\frac{18000}{4}\left(x-1\right)<\left(1-\frac{20}{100}\right)\times 6000x
Multiply 3 and 6000 to get 18000.
6000+4500\left(x-1\right)<\left(1-\frac{20}{100}\right)\times 6000x
Divide 18000 by 4 to get 4500.
6000+4500x-4500<\left(1-\frac{20}{100}\right)\times 6000x
Use the distributive property to multiply 4500 by x-1.
1500+4500x<\left(1-\frac{20}{100}\right)\times 6000x
Subtract 4500 from 6000 to get 1500.
1500+4500x<\left(1-\frac{1}{5}\right)\times 6000x
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
1500+4500x<\left(\frac{5}{5}-\frac{1}{5}\right)\times 6000x
Convert 1 to fraction \frac{5}{5}.
1500+4500x<\frac{5-1}{5}\times 6000x
Since \frac{5}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
1500+4500x<\frac{4}{5}\times 6000x
Subtract 1 from 5 to get 4.
1500+4500x<\frac{4\times 6000}{5}x
Express \frac{4}{5}\times 6000 as a single fraction.
1500+4500x<\frac{24000}{5}x
Multiply 4 and 6000 to get 24000.
1500+4500x<4800x
Divide 24000 by 5 to get 4800.
1500+4500x-4800x<0
Subtract 4800x from both sides.
1500-300x<0
Combine 4500x and -4800x to get -300x.
-300x<-1500
Subtract 1500 from both sides. Anything subtracted from zero gives its negation.
x>\frac{-1500}{-300}
Divide both sides by -300. Since -300 is negative, the inequality direction is changed.
x>5
Divide -1500 by -300 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}