Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)600}\\\end{array}
Use the 1^{st} digit 6 from dividend 600
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)600}\\\end{array}
Since 6 is less than 40, use the next digit 0 from dividend 600 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)600}\\\end{array}
Use the 2^{nd} digit 0 from dividend 600
\begin{array}{l}\phantom{40)}01\phantom{4}\\40\overline{)600}\\\phantom{40)}\underline{\phantom{}40\phantom{9}}\\\phantom{40)}20\\\end{array}
Find closest multiple of 40 to 60. We see that 1 \times 40 = 40 is the nearest. Now subtract 40 from 60 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{40)}01\phantom{5}\\40\overline{)600}\\\phantom{40)}\underline{\phantom{}40\phantom{9}}\\\phantom{40)}200\\\end{array}
Use the 3^{rd} digit 0 from dividend 600
\begin{array}{l}\phantom{40)}015\phantom{6}\\40\overline{)600}\\\phantom{40)}\underline{\phantom{}40\phantom{9}}\\\phantom{40)}200\\\phantom{40)}\underline{\phantom{}200\phantom{}}\\\phantom{40)999}0\\\end{array}
Find closest multiple of 40 to 200. We see that 5 \times 40 = 200 is the nearest. Now subtract 200 from 200 to get reminder 0. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }0
Since 0 is less than 40, stop the division. The reminder is 0. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}