Evaluate
\frac{75}{4}=18.75
Factor
\frac{3 \cdot 5 ^ {2}}{2 ^ {2}} = 18\frac{3}{4} = 18.75
Share
Copied to clipboard
\begin{array}{l}\phantom{32)}\phantom{1}\\32\overline{)600}\\\end{array}
Use the 1^{st} digit 6 from dividend 600
\begin{array}{l}\phantom{32)}0\phantom{2}\\32\overline{)600}\\\end{array}
Since 6 is less than 32, use the next digit 0 from dividend 600 and add 0 to the quotient
\begin{array}{l}\phantom{32)}0\phantom{3}\\32\overline{)600}\\\end{array}
Use the 2^{nd} digit 0 from dividend 600
\begin{array}{l}\phantom{32)}01\phantom{4}\\32\overline{)600}\\\phantom{32)}\underline{\phantom{}32\phantom{9}}\\\phantom{32)}28\\\end{array}
Find closest multiple of 32 to 60. We see that 1 \times 32 = 32 is the nearest. Now subtract 32 from 60 to get reminder 28. Add 1 to quotient.
\begin{array}{l}\phantom{32)}01\phantom{5}\\32\overline{)600}\\\phantom{32)}\underline{\phantom{}32\phantom{9}}\\\phantom{32)}280\\\end{array}
Use the 3^{rd} digit 0 from dividend 600
\begin{array}{l}\phantom{32)}018\phantom{6}\\32\overline{)600}\\\phantom{32)}\underline{\phantom{}32\phantom{9}}\\\phantom{32)}280\\\phantom{32)}\underline{\phantom{}256\phantom{}}\\\phantom{32)9}24\\\end{array}
Find closest multiple of 32 to 280. We see that 8 \times 32 = 256 is the nearest. Now subtract 256 from 280 to get reminder 24. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }24
Since 24 is less than 32, stop the division. The reminder is 24. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}