Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

60x^{2}=12
Add 12 to both sides. Anything plus zero gives itself.
x^{2}=\frac{12}{60}
Divide both sides by 60.
x^{2}=\frac{1}{5}
Reduce the fraction \frac{12}{60} to lowest terms by extracting and canceling out 12.
x=\frac{\sqrt{5}}{5} x=-\frac{\sqrt{5}}{5}
Take the square root of both sides of the equation.
60x^{2}-12=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 60\left(-12\right)}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, 0 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 60\left(-12\right)}}{2\times 60}
Square 0.
x=\frac{0±\sqrt{-240\left(-12\right)}}{2\times 60}
Multiply -4 times 60.
x=\frac{0±\sqrt{2880}}{2\times 60}
Multiply -240 times -12.
x=\frac{0±24\sqrt{5}}{2\times 60}
Take the square root of 2880.
x=\frac{0±24\sqrt{5}}{120}
Multiply 2 times 60.
x=\frac{\sqrt{5}}{5}
Now solve the equation x=\frac{0±24\sqrt{5}}{120} when ± is plus.
x=-\frac{\sqrt{5}}{5}
Now solve the equation x=\frac{0±24\sqrt{5}}{120} when ± is minus.
x=\frac{\sqrt{5}}{5} x=-\frac{\sqrt{5}}{5}
The equation is now solved.