Solve for x
x=29
Graph
Share
Copied to clipboard
6.8x=-3.9-\left(-8.9x\right)-\left(-1\right)-2x
To find the opposite of -8.9x-1, find the opposite of each term.
6.8x=-3.9+8.9x-\left(-1\right)-2x
The opposite of -8.9x is 8.9x.
6.8x=-3.9+8.9x+1-2x
The opposite of -1 is 1.
6.8x=-2.9+8.9x-2x
Add -3.9 and 1 to get -2.9.
6.8x=-2.9+6.9x
Combine 8.9x and -2x to get 6.9x.
6.8x-6.9x=-2.9
Subtract 6.9x from both sides.
-0.1x=-2.9
Combine 6.8x and -6.9x to get -0.1x.
x=\frac{-2.9}{-0.1}
Divide both sides by -0.1.
x=\frac{-29}{-1}
Expand \frac{-2.9}{-0.1} by multiplying both numerator and the denominator by 10.
x=29
Fraction \frac{-29}{-1} can be simplified to 29 by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}