Solve for E
E=\frac{25\left(63x+41\right)}{167\left(3x+2\right)}
x\neq -\frac{1}{3}\text{ and }x\neq -\frac{2}{3}
Solve for x
x=-\frac{334E-1025}{3\left(167E-525\right)}
E\neq \frac{500}{167}\text{ and }E\neq \frac{525}{167}
Graph
Share
Copied to clipboard
6.68E-20=\frac{x+\frac{1}{3}}{x+\frac{2}{3}}
Cancel out x+\frac{1}{3} in both numerator and denominator.
6.68E-20=\frac{\frac{1}{3}\left(3x+1\right)}{\frac{1}{3}\left(3x+2\right)}
Factor the expressions that are not already factored in \frac{x+\frac{1}{3}}{x+\frac{2}{3}}.
6.68E-20=\frac{3x+1}{\left(\frac{1}{3}\right)^{0}\left(3x+2\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
6.68E-20=\frac{3x+1}{1\left(3x+2\right)}
Calculate \frac{1}{3} to the power of 0 and get 1.
6.68E-20=\frac{3x+1}{3x+2}
Use the distributive property to multiply 1 by 3x+2.
6.68E=\frac{3x+1}{3x+2}+20
Add 20 to both sides.
6.68E=\frac{3x+1}{3x+2}+\frac{20\left(3x+2\right)}{3x+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20 times \frac{3x+2}{3x+2}.
6.68E=\frac{3x+1+20\left(3x+2\right)}{3x+2}
Since \frac{3x+1}{3x+2} and \frac{20\left(3x+2\right)}{3x+2} have the same denominator, add them by adding their numerators.
6.68E=\frac{3x+1+60x+40}{3x+2}
Do the multiplications in 3x+1+20\left(3x+2\right).
6.68E=\frac{63x+41}{3x+2}
Combine like terms in 3x+1+60x+40.
6.68E\left(3x+2\right)=63x+41
Multiply both sides of the equation by 3x+2.
20.04Ex+13.36E=63x+41
Use the distributive property to multiply 6.68E by 3x+2.
\left(20.04x+13.36\right)E=63x+41
Combine all terms containing E.
\frac{501x+334}{25}E=63x+41
The equation is in standard form.
\frac{25\times \frac{501x+334}{25}E}{501x+334}=\frac{25\left(63x+41\right)}{501x+334}
Divide both sides by 20.04x+13.36.
E=\frac{25\left(63x+41\right)}{501x+334}
Dividing by 20.04x+13.36 undoes the multiplication by 20.04x+13.36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}