Solve for x
x=\frac{16}{57}\approx 0.280701754
Graph
Share
Copied to clipboard
72\left(6-\left(2-\frac{x}{4}+3\times \frac{x}{8}\right)\right)-648\left(\frac{5x}{9}+\frac{x}{3}\right)=144-72x
Multiply both sides of the equation by 72, the least common multiple of 4,8,9,3.
72\left(6-\left(2-\frac{x}{4}+\frac{3x}{8}\right)\right)-648\left(\frac{5x}{9}+\frac{x}{3}\right)=144-72x
Express 3\times \frac{x}{8} as a single fraction.
72\left(6-\left(2-\frac{2x}{8}+\frac{3x}{8}\right)\right)-648\left(\frac{5x}{9}+\frac{x}{3}\right)=144-72x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 8 is 8. Multiply \frac{x}{4} times \frac{2}{2}.
72\left(6-\left(2+\frac{-2x+3x}{8}\right)\right)-648\left(\frac{5x}{9}+\frac{x}{3}\right)=144-72x
Since -\frac{2x}{8} and \frac{3x}{8} have the same denominator, add them by adding their numerators.
72\left(6-\left(2+\frac{x}{8}\right)\right)-648\left(\frac{5x}{9}+\frac{x}{3}\right)=144-72x
Combine like terms in -2x+3x.
72\left(6-2-\frac{x}{8}\right)-648\left(\frac{5x}{9}+\frac{x}{3}\right)=144-72x
To find the opposite of 2+\frac{x}{8}, find the opposite of each term.
72\left(4-\frac{x}{8}\right)-648\left(\frac{5x}{9}+\frac{x}{3}\right)=144-72x
Subtract 2 from 6 to get 4.
288-72\times \frac{x}{8}-648\left(\frac{5x}{9}+\frac{x}{3}\right)=144-72x
Use the distributive property to multiply 72 by 4-\frac{x}{8}.
288-9x-648\left(\frac{5x}{9}+\frac{x}{3}\right)=144-72x
Cancel out 8, the greatest common factor in 72 and 8.
288-9x-648\left(\frac{5x}{9}+\frac{3x}{9}\right)=144-72x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 3 is 9. Multiply \frac{x}{3} times \frac{3}{3}.
288-9x-648\times \frac{5x+3x}{9}=144-72x
Since \frac{5x}{9} and \frac{3x}{9} have the same denominator, add them by adding their numerators.
288-9x-648\times \frac{8x}{9}=144-72x
Combine like terms in 5x+3x.
288-9x-72\times 8x=144-72x
Cancel out 9, the greatest common factor in 648 and 9.
288-9x-576x=144-72x
Multiply 72 and 8 to get 576.
288-585x=144-72x
Combine -9x and -576x to get -585x.
288-585x+72x=144
Add 72x to both sides.
288-513x=144
Combine -585x and 72x to get -513x.
-513x=144-288
Subtract 288 from both sides.
-513x=-144
Subtract 288 from 144 to get -144.
x=\frac{-144}{-513}
Divide both sides by -513.
x=\frac{16}{57}
Reduce the fraction \frac{-144}{-513} to lowest terms by extracting and canceling out -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}