Solve for x
x = \frac{29}{9} = 3\frac{2}{9} \approx 3.222222222
Graph
Share
Copied to clipboard
8-3x=\frac{-10}{6}
Divide both sides by 6.
8-3x=-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
-3x=-\frac{5}{3}-8
Subtract 8 from both sides.
-3x=-\frac{5}{3}-\frac{24}{3}
Convert 8 to fraction \frac{24}{3}.
-3x=\frac{-5-24}{3}
Since -\frac{5}{3} and \frac{24}{3} have the same denominator, subtract them by subtracting their numerators.
-3x=-\frac{29}{3}
Subtract 24 from -5 to get -29.
x=\frac{-\frac{29}{3}}{-3}
Divide both sides by -3.
x=\frac{-29}{3\left(-3\right)}
Express \frac{-\frac{29}{3}}{-3} as a single fraction.
x=\frac{-29}{-9}
Multiply 3 and -3 to get -9.
x=\frac{29}{9}
Fraction \frac{-29}{-9} can be simplified to \frac{29}{9} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}