Evaluate
\frac{8}{3}\approx 2.666666667
Factor
\frac{2 ^ {3}}{3} = 2\frac{2}{3} = 2.6666666666666665
Share
Copied to clipboard
6\left(2-\frac{2}{3}\right)\sqrt{\frac{6}{9\times 6}}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
6\left(\frac{6}{3}-\frac{2}{3}\right)\sqrt{\frac{6}{9\times 6}}
Convert 2 to fraction \frac{6}{3}.
6\times \frac{6-2}{3}\sqrt{\frac{6}{9\times 6}}
Since \frac{6}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
6\times \frac{4}{3}\sqrt{\frac{6}{9\times 6}}
Subtract 2 from 6 to get 4.
\frac{6\times 4}{3}\sqrt{\frac{6}{9\times 6}}
Express 6\times \frac{4}{3} as a single fraction.
\frac{24}{3}\sqrt{\frac{6}{9\times 6}}
Multiply 6 and 4 to get 24.
8\sqrt{\frac{6}{9\times 6}}
Divide 24 by 3 to get 8.
8\sqrt{\frac{6}{54}}
Multiply 9 and 6 to get 54.
8\sqrt{\frac{1}{9}}
Reduce the fraction \frac{6}{54} to lowest terms by extracting and canceling out 6.
8\times \frac{1}{3}
Rewrite the square root of the division \frac{1}{9} as the division of square roots \frac{\sqrt{1}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{8}{3}
Multiply 8 and \frac{1}{3} to get \frac{8}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}