Solve for x
x = \frac{2 \sqrt{15}}{7} \approx 1.10656667
x = -\frac{2 \sqrt{15}}{7} \approx -1.10656667
Graph
Share
Copied to clipboard
6=4.9x^{2}
Multiply 0.5 and 9.8 to get 4.9.
4.9x^{2}=6
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{6}{4.9}
Divide both sides by 4.9.
x^{2}=\frac{60}{49}
Expand \frac{6}{4.9} by multiplying both numerator and the denominator by 10.
x=\frac{2\sqrt{15}}{7} x=-\frac{2\sqrt{15}}{7}
Take the square root of both sides of the equation.
6=4.9x^{2}
Multiply 0.5 and 9.8 to get 4.9.
4.9x^{2}=6
Swap sides so that all variable terms are on the left hand side.
4.9x^{2}-6=0
Subtract 6 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 4.9\left(-6\right)}}{2\times 4.9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.9 for a, 0 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4.9\left(-6\right)}}{2\times 4.9}
Square 0.
x=\frac{0±\sqrt{-19.6\left(-6\right)}}{2\times 4.9}
Multiply -4 times 4.9.
x=\frac{0±\sqrt{117.6}}{2\times 4.9}
Multiply -19.6 times -6.
x=\frac{0±\frac{14\sqrt{15}}{5}}{2\times 4.9}
Take the square root of 117.6.
x=\frac{0±\frac{14\sqrt{15}}{5}}{9.8}
Multiply 2 times 4.9.
x=\frac{2\sqrt{15}}{7}
Now solve the equation x=\frac{0±\frac{14\sqrt{15}}{5}}{9.8} when ± is plus.
x=-\frac{2\sqrt{15}}{7}
Now solve the equation x=\frac{0±\frac{14\sqrt{15}}{5}}{9.8} when ± is minus.
x=\frac{2\sqrt{15}}{7} x=-\frac{2\sqrt{15}}{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}