Solve for z
z=\frac{1+\sqrt{5}i}{3}\approx 0.333333333+0.745355992i
z=\frac{-\sqrt{5}i+1}{3}\approx 0.333333333-0.745355992i
Share
Copied to clipboard
6z^{2}-11z+7z=-4
Add 7z to both sides.
6z^{2}-4z=-4
Combine -11z and 7z to get -4z.
6z^{2}-4z+4=0
Add 4 to both sides.
z=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 6\times 4}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-4\right)±\sqrt{16-4\times 6\times 4}}{2\times 6}
Square -4.
z=\frac{-\left(-4\right)±\sqrt{16-24\times 4}}{2\times 6}
Multiply -4 times 6.
z=\frac{-\left(-4\right)±\sqrt{16-96}}{2\times 6}
Multiply -24 times 4.
z=\frac{-\left(-4\right)±\sqrt{-80}}{2\times 6}
Add 16 to -96.
z=\frac{-\left(-4\right)±4\sqrt{5}i}{2\times 6}
Take the square root of -80.
z=\frac{4±4\sqrt{5}i}{2\times 6}
The opposite of -4 is 4.
z=\frac{4±4\sqrt{5}i}{12}
Multiply 2 times 6.
z=\frac{4+4\sqrt{5}i}{12}
Now solve the equation z=\frac{4±4\sqrt{5}i}{12} when ± is plus. Add 4 to 4i\sqrt{5}.
z=\frac{1+\sqrt{5}i}{3}
Divide 4+4i\sqrt{5} by 12.
z=\frac{-4\sqrt{5}i+4}{12}
Now solve the equation z=\frac{4±4\sqrt{5}i}{12} when ± is minus. Subtract 4i\sqrt{5} from 4.
z=\frac{-\sqrt{5}i+1}{3}
Divide 4-4i\sqrt{5} by 12.
z=\frac{1+\sqrt{5}i}{3} z=\frac{-\sqrt{5}i+1}{3}
The equation is now solved.
6z^{2}-11z+7z=-4
Add 7z to both sides.
6z^{2}-4z=-4
Combine -11z and 7z to get -4z.
\frac{6z^{2}-4z}{6}=-\frac{4}{6}
Divide both sides by 6.
z^{2}+\left(-\frac{4}{6}\right)z=-\frac{4}{6}
Dividing by 6 undoes the multiplication by 6.
z^{2}-\frac{2}{3}z=-\frac{4}{6}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
z^{2}-\frac{2}{3}z=-\frac{2}{3}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
z^{2}-\frac{2}{3}z+\left(-\frac{1}{3}\right)^{2}=-\frac{2}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{2}{3}z+\frac{1}{9}=-\frac{2}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{2}{3}z+\frac{1}{9}=-\frac{5}{9}
Add -\frac{2}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z-\frac{1}{3}\right)^{2}=-\frac{5}{9}
Factor z^{2}-\frac{2}{3}z+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{5}{9}}
Take the square root of both sides of the equation.
z-\frac{1}{3}=\frac{\sqrt{5}i}{3} z-\frac{1}{3}=-\frac{\sqrt{5}i}{3}
Simplify.
z=\frac{1+\sqrt{5}i}{3} z=\frac{-\sqrt{5}i+1}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}