Solve for y
y=\frac{1+2\sqrt{2}i}{3}\approx 0.333333333+0.942809042i
y=\frac{-2\sqrt{2}i+1}{3}\approx 0.333333333-0.942809042i
Share
Copied to clipboard
6y^{2}+5y-9y=-6
Subtract 9y from both sides.
6y^{2}-4y=-6
Combine 5y and -9y to get -4y.
6y^{2}-4y+6=0
Add 6 to both sides.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 6\times 6}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -4 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 6\times 6}}{2\times 6}
Square -4.
y=\frac{-\left(-4\right)±\sqrt{16-24\times 6}}{2\times 6}
Multiply -4 times 6.
y=\frac{-\left(-4\right)±\sqrt{16-144}}{2\times 6}
Multiply -24 times 6.
y=\frac{-\left(-4\right)±\sqrt{-128}}{2\times 6}
Add 16 to -144.
y=\frac{-\left(-4\right)±8\sqrt{2}i}{2\times 6}
Take the square root of -128.
y=\frac{4±8\sqrt{2}i}{2\times 6}
The opposite of -4 is 4.
y=\frac{4±8\sqrt{2}i}{12}
Multiply 2 times 6.
y=\frac{4+8\sqrt{2}i}{12}
Now solve the equation y=\frac{4±8\sqrt{2}i}{12} when ± is plus. Add 4 to 8i\sqrt{2}.
y=\frac{1+2\sqrt{2}i}{3}
Divide 4+8i\sqrt{2} by 12.
y=\frac{-8\sqrt{2}i+4}{12}
Now solve the equation y=\frac{4±8\sqrt{2}i}{12} when ± is minus. Subtract 8i\sqrt{2} from 4.
y=\frac{-2\sqrt{2}i+1}{3}
Divide 4-8i\sqrt{2} by 12.
y=\frac{1+2\sqrt{2}i}{3} y=\frac{-2\sqrt{2}i+1}{3}
The equation is now solved.
6y^{2}+5y-9y=-6
Subtract 9y from both sides.
6y^{2}-4y=-6
Combine 5y and -9y to get -4y.
\frac{6y^{2}-4y}{6}=-\frac{6}{6}
Divide both sides by 6.
y^{2}+\left(-\frac{4}{6}\right)y=-\frac{6}{6}
Dividing by 6 undoes the multiplication by 6.
y^{2}-\frac{2}{3}y=-\frac{6}{6}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{2}{3}y=-1
Divide -6 by 6.
y^{2}-\frac{2}{3}y+\left(-\frac{1}{3}\right)^{2}=-1+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{2}{3}y+\frac{1}{9}=-1+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{2}{3}y+\frac{1}{9}=-\frac{8}{9}
Add -1 to \frac{1}{9}.
\left(y-\frac{1}{3}\right)^{2}=-\frac{8}{9}
Factor y^{2}-\frac{2}{3}y+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{8}{9}}
Take the square root of both sides of the equation.
y-\frac{1}{3}=\frac{2\sqrt{2}i}{3} y-\frac{1}{3}=-\frac{2\sqrt{2}i}{3}
Simplify.
y=\frac{1+2\sqrt{2}i}{3} y=\frac{-2\sqrt{2}i+1}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}