Solve for y
y=\frac{1+\sqrt{17}i}{6}\approx 0.166666667+0.687184271i
y=\frac{-\sqrt{17}i+1}{6}\approx 0.166666667-0.687184271i
Share
Copied to clipboard
6y^{2}+3y-5y=-3
Subtract 5y from both sides.
6y^{2}-2y=-3
Combine 3y and -5y to get -2y.
6y^{2}-2y+3=0
Add 3 to both sides.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\times 3}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±\sqrt{4-4\times 6\times 3}}{2\times 6}
Square -2.
y=\frac{-\left(-2\right)±\sqrt{4-24\times 3}}{2\times 6}
Multiply -4 times 6.
y=\frac{-\left(-2\right)±\sqrt{4-72}}{2\times 6}
Multiply -24 times 3.
y=\frac{-\left(-2\right)±\sqrt{-68}}{2\times 6}
Add 4 to -72.
y=\frac{-\left(-2\right)±2\sqrt{17}i}{2\times 6}
Take the square root of -68.
y=\frac{2±2\sqrt{17}i}{2\times 6}
The opposite of -2 is 2.
y=\frac{2±2\sqrt{17}i}{12}
Multiply 2 times 6.
y=\frac{2+2\sqrt{17}i}{12}
Now solve the equation y=\frac{2±2\sqrt{17}i}{12} when ± is plus. Add 2 to 2i\sqrt{17}.
y=\frac{1+\sqrt{17}i}{6}
Divide 2+2i\sqrt{17} by 12.
y=\frac{-2\sqrt{17}i+2}{12}
Now solve the equation y=\frac{2±2\sqrt{17}i}{12} when ± is minus. Subtract 2i\sqrt{17} from 2.
y=\frac{-\sqrt{17}i+1}{6}
Divide 2-2i\sqrt{17} by 12.
y=\frac{1+\sqrt{17}i}{6} y=\frac{-\sqrt{17}i+1}{6}
The equation is now solved.
6y^{2}+3y-5y=-3
Subtract 5y from both sides.
6y^{2}-2y=-3
Combine 3y and -5y to get -2y.
\frac{6y^{2}-2y}{6}=-\frac{3}{6}
Divide both sides by 6.
y^{2}+\left(-\frac{2}{6}\right)y=-\frac{3}{6}
Dividing by 6 undoes the multiplication by 6.
y^{2}-\frac{1}{3}y=-\frac{3}{6}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{1}{3}y=-\frac{1}{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
y^{2}-\frac{1}{3}y+\left(-\frac{1}{6}\right)^{2}=-\frac{1}{2}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{1}{3}y+\frac{1}{36}=-\frac{1}{2}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{1}{3}y+\frac{1}{36}=-\frac{17}{36}
Add -\frac{1}{2} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{1}{6}\right)^{2}=-\frac{17}{36}
Factor y^{2}-\frac{1}{3}y+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{6}\right)^{2}}=\sqrt{-\frac{17}{36}}
Take the square root of both sides of the equation.
y-\frac{1}{6}=\frac{\sqrt{17}i}{6} y-\frac{1}{6}=-\frac{\sqrt{17}i}{6}
Simplify.
y=\frac{1+\sqrt{17}i}{6} y=\frac{-\sqrt{17}i+1}{6}
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}