Factor
y\left(x+3\right)\left(3x+2\right)
Evaluate
y\left(x+3\right)\left(3x+2\right)
Share
Copied to clipboard
y\left(6+11x+3x^{2}\right)
Factor out y.
3x^{2}+11x+6
Consider 6+11x+3x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=3\times 6=18
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,18 2,9 3,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
a=2 b=9
The solution is the pair that gives sum 11.
\left(3x^{2}+2x\right)+\left(9x+6\right)
Rewrite 3x^{2}+11x+6 as \left(3x^{2}+2x\right)+\left(9x+6\right).
x\left(3x+2\right)+3\left(3x+2\right)
Factor out x in the first and 3 in the second group.
\left(3x+2\right)\left(x+3\right)
Factor out common term 3x+2 by using distributive property.
y\left(3x+2\right)\left(x+3\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}