Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{2\left(3x+8\right)}{y}\text{, }&y\neq 0\\k\in \mathrm{C}\text{, }&x=-\frac{8}{3}\text{ and }y=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{2\left(3x+8\right)}{y}\text{, }&y\neq 0\\k\in \mathrm{R}\text{, }&x=-\frac{8}{3}\text{ and }y=0\end{matrix}\right.
Solve for x
x=\frac{ky-16}{6}
Graph
Share
Copied to clipboard
-ky+16=-6x
Subtract 6x from both sides. Anything subtracted from zero gives its negation.
-ky=-6x-16
Subtract 16 from both sides.
\left(-y\right)k=-6x-16
The equation is in standard form.
\frac{\left(-y\right)k}{-y}=\frac{-6x-16}{-y}
Divide both sides by -y.
k=\frac{-6x-16}{-y}
Dividing by -y undoes the multiplication by -y.
k=\frac{2\left(3x+8\right)}{y}
Divide -16-6x by -y.
-ky+16=-6x
Subtract 6x from both sides. Anything subtracted from zero gives its negation.
-ky=-6x-16
Subtract 16 from both sides.
\left(-y\right)k=-6x-16
The equation is in standard form.
\frac{\left(-y\right)k}{-y}=\frac{-6x-16}{-y}
Divide both sides by -y.
k=\frac{-6x-16}{-y}
Dividing by -y undoes the multiplication by -y.
k=\frac{2\left(3x+8\right)}{y}
Divide -6x-16 by -y.
6x+16=ky
Add ky to both sides. Anything plus zero gives itself.
6x=ky-16
Subtract 16 from both sides.
\frac{6x}{6}=\frac{ky-16}{6}
Divide both sides by 6.
x=\frac{ky-16}{6}
Dividing by 6 undoes the multiplication by 6.
x=\frac{ky}{6}-\frac{8}{3}
Divide ky-16 by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}