Evaluate
3+6x-45x^{2}
Factor
3\left(-5x-1\right)\left(3x-1\right)
Graph
Share
Copied to clipboard
6x-3x^{2}\times 15+3
Multiply x and x to get x^{2}.
6x-45x^{2}+3
Multiply 3 and 15 to get 45.
3\left(2x-15xx+1\right)
Factor out 3.
-15x^{2}+2x+1
Consider 2x-15x^{2}+1. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=-15=-15
Factor the expression by grouping. First, the expression needs to be rewritten as -15x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=5 b=-3
The solution is the pair that gives sum 2.
\left(-15x^{2}+5x\right)+\left(-3x+1\right)
Rewrite -15x^{2}+2x+1 as \left(-15x^{2}+5x\right)+\left(-3x+1\right).
-5x\left(3x-1\right)-\left(3x-1\right)
Factor out -5x in the first and -1 in the second group.
\left(3x-1\right)\left(-5x-1\right)
Factor out common term 3x-1 by using distributive property.
3\left(3x-1\right)\left(-5x-1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}