Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

42x^{2}-54x-\left(x+3\right)^{2}-\left(2x-4\right)\left(2x+4\right)
Use the distributive property to multiply 6x by 7x-9.
42x^{2}-54x-\left(x^{2}+6x+9\right)-\left(2x-4\right)\left(2x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
42x^{2}-54x-x^{2}-6x-9-\left(2x-4\right)\left(2x+4\right)
To find the opposite of x^{2}+6x+9, find the opposite of each term.
41x^{2}-54x-6x-9-\left(2x-4\right)\left(2x+4\right)
Combine 42x^{2} and -x^{2} to get 41x^{2}.
41x^{2}-60x-9-\left(2x-4\right)\left(2x+4\right)
Combine -54x and -6x to get -60x.
41x^{2}-60x-9-\left(\left(2x\right)^{2}-16\right)
Consider \left(2x-4\right)\left(2x+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
41x^{2}-60x-9-\left(2^{2}x^{2}-16\right)
Expand \left(2x\right)^{2}.
41x^{2}-60x-9-\left(4x^{2}-16\right)
Calculate 2 to the power of 2 and get 4.
41x^{2}-60x-9-4x^{2}+16
To find the opposite of 4x^{2}-16, find the opposite of each term.
37x^{2}-60x-9+16
Combine 41x^{2} and -4x^{2} to get 37x^{2}.
37x^{2}-60x+7
Add -9 and 16 to get 7.
42x^{2}-54x-\left(x+3\right)^{2}-\left(2x-4\right)\left(2x+4\right)
Use the distributive property to multiply 6x by 7x-9.
42x^{2}-54x-\left(x^{2}+6x+9\right)-\left(2x-4\right)\left(2x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
42x^{2}-54x-x^{2}-6x-9-\left(2x-4\right)\left(2x+4\right)
To find the opposite of x^{2}+6x+9, find the opposite of each term.
41x^{2}-54x-6x-9-\left(2x-4\right)\left(2x+4\right)
Combine 42x^{2} and -x^{2} to get 41x^{2}.
41x^{2}-60x-9-\left(2x-4\right)\left(2x+4\right)
Combine -54x and -6x to get -60x.
41x^{2}-60x-9-\left(\left(2x\right)^{2}-16\right)
Consider \left(2x-4\right)\left(2x+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
41x^{2}-60x-9-\left(2^{2}x^{2}-16\right)
Expand \left(2x\right)^{2}.
41x^{2}-60x-9-\left(4x^{2}-16\right)
Calculate 2 to the power of 2 and get 4.
41x^{2}-60x-9-4x^{2}+16
To find the opposite of 4x^{2}-16, find the opposite of each term.
37x^{2}-60x-9+16
Combine 41x^{2} and -4x^{2} to get 37x^{2}.
37x^{2}-60x+7
Add -9 and 16 to get 7.