Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6t^{2}-3t-28=0
Substitute t for x^{3}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-28\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, -3 for b, and -28 for c in the quadratic formula.
t=\frac{3±\sqrt{681}}{12}
Do the calculations.
t=\frac{\sqrt{681}}{12}+\frac{1}{4} t=-\frac{\sqrt{681}}{12}+\frac{1}{4}
Solve the equation t=\frac{3±\sqrt{681}}{12} when ± is plus and when ± is minus.
x=-\sqrt[3]{\frac{\sqrt{681}}{12}+\frac{1}{4}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{\sqrt{681}}{12}+\frac{1}{4}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{\sqrt{681}}{12}+\frac{1}{4}} x=-\sqrt[3]{-\left(-\frac{\sqrt{681}}{12}+\frac{1}{4}\right)}ie^{\frac{\pi i}{6}} x=-\sqrt[3]{-\left(-\frac{\sqrt{681}}{12}+\frac{1}{4}\right)} x=\sqrt[3]{-\left(-\frac{\sqrt{681}}{12}+\frac{1}{4}\right)}e^{\frac{\pi i}{3}}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
6t^{2}-3t-28=0
Substitute t for x^{3}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-28\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, -3 for b, and -28 for c in the quadratic formula.
t=\frac{3±\sqrt{681}}{12}
Do the calculations.
t=\frac{\sqrt{681}}{12}+\frac{1}{4} t=-\frac{\sqrt{681}}{12}+\frac{1}{4}
Solve the equation t=\frac{3±\sqrt{681}}{12} when ± is plus and when ± is minus.
x=\sqrt[3]{\frac{\sqrt{681}}{12}+\frac{1}{4}} x=\sqrt[3]{-\frac{\sqrt{681}}{12}+\frac{1}{4}}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.