Solve for x (complex solution)
x\in \frac{12^{\frac{2}{3}}\sqrt[3]{\sqrt{681}-3}e^{\frac{\pi i}{3}}}{12},\frac{12^{\frac{2}{3}}\sqrt[3]{\sqrt{681}-3}e^{\frac{5\pi i}{3}}}{12},-\frac{12^{\frac{2}{3}}\sqrt[3]{\sqrt{681}-3}}{12},\frac{12^{\frac{2}{3}}\sqrt[3]{\sqrt{681}+3}e^{\frac{4\pi i}{3}}}{12},\frac{12^{\frac{2}{3}}\sqrt[3]{\sqrt{681}+3}}{12},\frac{12^{\frac{2}{3}}\sqrt[3]{\sqrt{681}+3}e^{\frac{2\pi i}{3}}}{12}
Solve for x
x = \frac{12 ^ {\frac{2}{3}} \sqrt[3]{\sqrt{681} + 3}}{12} \approx 1.343436772
x = \frac{12 ^ {\frac{2}{3}} \sqrt[3]{3 - \sqrt{681}}}{12} \approx 1.243898743
Graph
Share
Copied to clipboard
6t^{2}-3t-28=0
Substitute t for x^{3}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-28\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, -3 for b, and -28 for c in the quadratic formula.
t=\frac{3±\sqrt{681}}{12}
Do the calculations.
t=\frac{\sqrt{681}}{12}+\frac{1}{4} t=-\frac{\sqrt{681}}{12}+\frac{1}{4}
Solve the equation t=\frac{3±\sqrt{681}}{12} when ± is plus and when ± is minus.
x=-\sqrt[3]{\frac{\sqrt{681}}{12}+\frac{1}{4}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{\sqrt{681}}{12}+\frac{1}{4}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{\sqrt{681}}{12}+\frac{1}{4}} x=-\sqrt[3]{-\left(-\frac{\sqrt{681}}{12}+\frac{1}{4}\right)}ie^{\frac{\pi i}{6}} x=-\sqrt[3]{-\left(-\frac{\sqrt{681}}{12}+\frac{1}{4}\right)} x=\sqrt[3]{-\left(-\frac{\sqrt{681}}{12}+\frac{1}{4}\right)}e^{\frac{\pi i}{3}}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
6t^{2}-3t-28=0
Substitute t for x^{3}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-28\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, -3 for b, and -28 for c in the quadratic formula.
t=\frac{3±\sqrt{681}}{12}
Do the calculations.
t=\frac{\sqrt{681}}{12}+\frac{1}{4} t=-\frac{\sqrt{681}}{12}+\frac{1}{4}
Solve the equation t=\frac{3±\sqrt{681}}{12} when ± is plus and when ± is minus.
x=\sqrt[3]{\frac{\sqrt{681}}{12}+\frac{1}{4}} x=\sqrt[3]{-\frac{\sqrt{681}}{12}+\frac{1}{4}}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}