Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6t^{2}+t-5=0
Substitute t for x^{3}.
t=\frac{-1±\sqrt{1^{2}-4\times 6\left(-5\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, 1 for b, and -5 for c in the quadratic formula.
t=\frac{-1±11}{12}
Do the calculations.
t=\frac{5}{6} t=-1
Solve the equation t=\frac{-1±11}{12} when ± is plus and when ± is minus.
x=-\frac{\sqrt[3]{5}\times 6^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{6} x=\frac{\sqrt[3]{5}\times 6^{\frac{2}{3}}ie^{\frac{\pi i}{6}}}{6} x=\frac{\sqrt[3]{5}\times 6^{\frac{2}{3}}}{6} x=-1 x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
6t^{2}+t-5=0
Substitute t for x^{3}.
t=\frac{-1±\sqrt{1^{2}-4\times 6\left(-5\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, 1 for b, and -5 for c in the quadratic formula.
t=\frac{-1±11}{12}
Do the calculations.
t=\frac{5}{6} t=-1
Solve the equation t=\frac{-1±11}{12} when ± is plus and when ± is minus.
x=\frac{\sqrt[3]{5}\times 6^{\frac{2}{3}}}{6} x=-1
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.