Solve for x
x = \frac{\sqrt{429} + 7}{10} \approx 2.771231518
x=\frac{7-\sqrt{429}}{10}\approx -1.371231518
Graph
Share
Copied to clipboard
5x^{2}-7x-1=18
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-7x-1-18=0
Subtract 18 from both sides.
5x^{2}-7x-19=0
Subtract 18 from -1 to get -19.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\left(-19\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -7 for b, and -19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 5\left(-19\right)}}{2\times 5}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-20\left(-19\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-7\right)±\sqrt{49+380}}{2\times 5}
Multiply -20 times -19.
x=\frac{-\left(-7\right)±\sqrt{429}}{2\times 5}
Add 49 to 380.
x=\frac{7±\sqrt{429}}{2\times 5}
The opposite of -7 is 7.
x=\frac{7±\sqrt{429}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{429}+7}{10}
Now solve the equation x=\frac{7±\sqrt{429}}{10} when ± is plus. Add 7 to \sqrt{429}.
x=\frac{7-\sqrt{429}}{10}
Now solve the equation x=\frac{7±\sqrt{429}}{10} when ± is minus. Subtract \sqrt{429} from 7.
x=\frac{\sqrt{429}+7}{10} x=\frac{7-\sqrt{429}}{10}
The equation is now solved.
5x^{2}-7x-1=18
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-7x=18+1
Add 1 to both sides.
5x^{2}-7x=19
Add 18 and 1 to get 19.
\frac{5x^{2}-7x}{5}=\frac{19}{5}
Divide both sides by 5.
x^{2}-\frac{7}{5}x=\frac{19}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=\frac{19}{5}+\left(-\frac{7}{10}\right)^{2}
Divide -\frac{7}{5}, the coefficient of the x term, by 2 to get -\frac{7}{10}. Then add the square of -\frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{19}{5}+\frac{49}{100}
Square -\frac{7}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{429}{100}
Add \frac{19}{5} to \frac{49}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{10}\right)^{2}=\frac{429}{100}
Factor x^{2}-\frac{7}{5}x+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{\frac{429}{100}}
Take the square root of both sides of the equation.
x-\frac{7}{10}=\frac{\sqrt{429}}{10} x-\frac{7}{10}=-\frac{\sqrt{429}}{10}
Simplify.
x=\frac{\sqrt{429}+7}{10} x=\frac{7-\sqrt{429}}{10}
Add \frac{7}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}