Solve for x
x=\frac{\sqrt{921}}{12}-\frac{3}{4}\approx 1.778998484
x=-\frac{\sqrt{921}}{12}-\frac{3}{4}\approx -3.278998484
Graph
Share
Copied to clipboard
6x^{2}-5x-35=-14x
Subtract 35 from both sides.
6x^{2}-5x-35+14x=0
Add 14x to both sides.
6x^{2}+9x-35=0
Combine -5x and 14x to get 9x.
x=\frac{-9±\sqrt{9^{2}-4\times 6\left(-35\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 9 for b, and -35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 6\left(-35\right)}}{2\times 6}
Square 9.
x=\frac{-9±\sqrt{81-24\left(-35\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-9±\sqrt{81+840}}{2\times 6}
Multiply -24 times -35.
x=\frac{-9±\sqrt{921}}{2\times 6}
Add 81 to 840.
x=\frac{-9±\sqrt{921}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{921}-9}{12}
Now solve the equation x=\frac{-9±\sqrt{921}}{12} when ± is plus. Add -9 to \sqrt{921}.
x=\frac{\sqrt{921}}{12}-\frac{3}{4}
Divide -9+\sqrt{921} by 12.
x=\frac{-\sqrt{921}-9}{12}
Now solve the equation x=\frac{-9±\sqrt{921}}{12} when ± is minus. Subtract \sqrt{921} from -9.
x=-\frac{\sqrt{921}}{12}-\frac{3}{4}
Divide -9-\sqrt{921} by 12.
x=\frac{\sqrt{921}}{12}-\frac{3}{4} x=-\frac{\sqrt{921}}{12}-\frac{3}{4}
The equation is now solved.
6x^{2}-5x+14x=35
Add 14x to both sides.
6x^{2}+9x=35
Combine -5x and 14x to get 9x.
\frac{6x^{2}+9x}{6}=\frac{35}{6}
Divide both sides by 6.
x^{2}+\frac{9}{6}x=\frac{35}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{3}{2}x=\frac{35}{6}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{35}{6}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{35}{6}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{307}{48}
Add \frac{35}{6} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{307}{48}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{307}{48}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{921}}{12} x+\frac{3}{4}=-\frac{\sqrt{921}}{12}
Simplify.
x=\frac{\sqrt{921}}{12}-\frac{3}{4} x=-\frac{\sqrt{921}}{12}-\frac{3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}