Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-x=-35
Subtract x from both sides.
6x^{2}-x+35=0
Add 35 to both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\times 35}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -1 for b, and 35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-24\times 35}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-1\right)±\sqrt{1-840}}{2\times 6}
Multiply -24 times 35.
x=\frac{-\left(-1\right)±\sqrt{-839}}{2\times 6}
Add 1 to -840.
x=\frac{-\left(-1\right)±\sqrt{839}i}{2\times 6}
Take the square root of -839.
x=\frac{1±\sqrt{839}i}{2\times 6}
The opposite of -1 is 1.
x=\frac{1±\sqrt{839}i}{12}
Multiply 2 times 6.
x=\frac{1+\sqrt{839}i}{12}
Now solve the equation x=\frac{1±\sqrt{839}i}{12} when ± is plus. Add 1 to i\sqrt{839}.
x=\frac{-\sqrt{839}i+1}{12}
Now solve the equation x=\frac{1±\sqrt{839}i}{12} when ± is minus. Subtract i\sqrt{839} from 1.
x=\frac{1+\sqrt{839}i}{12} x=\frac{-\sqrt{839}i+1}{12}
The equation is now solved.
6x^{2}-x=-35
Subtract x from both sides.
\frac{6x^{2}-x}{6}=-\frac{35}{6}
Divide both sides by 6.
x^{2}-\frac{1}{6}x=-\frac{35}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=-\frac{35}{6}+\left(-\frac{1}{12}\right)^{2}
Divide -\frac{1}{6}, the coefficient of the x term, by 2 to get -\frac{1}{12}. Then add the square of -\frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{6}x+\frac{1}{144}=-\frac{35}{6}+\frac{1}{144}
Square -\frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{6}x+\frac{1}{144}=-\frac{839}{144}
Add -\frac{35}{6} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{12}\right)^{2}=-\frac{839}{144}
Factor x^{2}-\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{-\frac{839}{144}}
Take the square root of both sides of the equation.
x-\frac{1}{12}=\frac{\sqrt{839}i}{12} x-\frac{1}{12}=-\frac{\sqrt{839}i}{12}
Simplify.
x=\frac{1+\sqrt{839}i}{12} x=\frac{-\sqrt{839}i+1}{12}
Add \frac{1}{12} to both sides of the equation.