Solve for x
x=-6
x = \frac{37}{6} = 6\frac{1}{6} \approx 6.166666667
Graph
Share
Copied to clipboard
6x^{2}-x=222
Subtract x from both sides.
6x^{2}-x-222=0
Subtract 222 from both sides.
a+b=-1 ab=6\left(-222\right)=-1332
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx-222. To find a and b, set up a system to be solved.
1,-1332 2,-666 3,-444 4,-333 6,-222 9,-148 12,-111 18,-74 36,-37
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -1332.
1-1332=-1331 2-666=-664 3-444=-441 4-333=-329 6-222=-216 9-148=-139 12-111=-99 18-74=-56 36-37=-1
Calculate the sum for each pair.
a=-37 b=36
The solution is the pair that gives sum -1.
\left(6x^{2}-37x\right)+\left(36x-222\right)
Rewrite 6x^{2}-x-222 as \left(6x^{2}-37x\right)+\left(36x-222\right).
x\left(6x-37\right)+6\left(6x-37\right)
Factor out x in the first and 6 in the second group.
\left(6x-37\right)\left(x+6\right)
Factor out common term 6x-37 by using distributive property.
x=\frac{37}{6} x=-6
To find equation solutions, solve 6x-37=0 and x+6=0.
6x^{2}-x=222
Subtract x from both sides.
6x^{2}-x-222=0
Subtract 222 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-222\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -1 for b, and -222 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-222\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-1\right)±\sqrt{1+5328}}{2\times 6}
Multiply -24 times -222.
x=\frac{-\left(-1\right)±\sqrt{5329}}{2\times 6}
Add 1 to 5328.
x=\frac{-\left(-1\right)±73}{2\times 6}
Take the square root of 5329.
x=\frac{1±73}{2\times 6}
The opposite of -1 is 1.
x=\frac{1±73}{12}
Multiply 2 times 6.
x=\frac{74}{12}
Now solve the equation x=\frac{1±73}{12} when ± is plus. Add 1 to 73.
x=\frac{37}{6}
Reduce the fraction \frac{74}{12} to lowest terms by extracting and canceling out 2.
x=-\frac{72}{12}
Now solve the equation x=\frac{1±73}{12} when ± is minus. Subtract 73 from 1.
x=-6
Divide -72 by 12.
x=\frac{37}{6} x=-6
The equation is now solved.
6x^{2}-x=222
Subtract x from both sides.
\frac{6x^{2}-x}{6}=\frac{222}{6}
Divide both sides by 6.
x^{2}-\frac{1}{6}x=\frac{222}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{1}{6}x=37
Divide 222 by 6.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=37+\left(-\frac{1}{12}\right)^{2}
Divide -\frac{1}{6}, the coefficient of the x term, by 2 to get -\frac{1}{12}. Then add the square of -\frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{6}x+\frac{1}{144}=37+\frac{1}{144}
Square -\frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{5329}{144}
Add 37 to \frac{1}{144}.
\left(x-\frac{1}{12}\right)^{2}=\frac{5329}{144}
Factor x^{2}-\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{5329}{144}}
Take the square root of both sides of the equation.
x-\frac{1}{12}=\frac{73}{12} x-\frac{1}{12}=-\frac{73}{12}
Simplify.
x=\frac{37}{6} x=-6
Add \frac{1}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}