Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
6x^{2}+5x-6=0
Subtract 6 from both sides.
a+b=5 ab=6\left(-6\right)=-36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,36 -2,18 -3,12 -4,9 -6,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Calculate the sum for each pair.
a=-4 b=9
The solution is the pair that gives sum 5.
\left(6x^{2}-4x\right)+\left(9x-6\right)
Rewrite 6x^{2}+5x-6 as \left(6x^{2}-4x\right)+\left(9x-6\right).
2x\left(3x-2\right)+3\left(3x-2\right)
Factor out 2x in the first and 3 in the second group.
\left(3x-2\right)\left(2x+3\right)
Factor out common term 3x-2 by using distributive property.
x=\frac{2}{3} x=-\frac{3}{2}
To find equation solutions, solve 3x-2=0 and 2x+3=0.
6x^{2}+5x=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6x^{2}+5x-6=6-6
Subtract 6 from both sides of the equation.
6x^{2}+5x-6=0
Subtracting 6 from itself leaves 0.
x=\frac{-5±\sqrt{5^{2}-4\times 6\left(-6\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 5 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
Square 5.
x=\frac{-5±\sqrt{25-24\left(-6\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-5±\sqrt{25+144}}{2\times 6}
Multiply -24 times -6.
x=\frac{-5±\sqrt{169}}{2\times 6}
Add 25 to 144.
x=\frac{-5±13}{2\times 6}
Take the square root of 169.
x=\frac{-5±13}{12}
Multiply 2 times 6.
x=\frac{8}{12}
Now solve the equation x=\frac{-5±13}{12} when ± is plus. Add -5 to 13.
x=\frac{2}{3}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
x=-\frac{18}{12}
Now solve the equation x=\frac{-5±13}{12} when ± is minus. Subtract 13 from -5.
x=-\frac{3}{2}
Reduce the fraction \frac{-18}{12} to lowest terms by extracting and canceling out 6.
x=\frac{2}{3} x=-\frac{3}{2}
The equation is now solved.
6x^{2}+5x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}+5x}{6}=\frac{6}{6}
Divide both sides by 6.
x^{2}+\frac{5}{6}x=\frac{6}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{5}{6}x=1
Divide 6 by 6.
x^{2}+\frac{5}{6}x+\left(\frac{5}{12}\right)^{2}=1+\left(\frac{5}{12}\right)^{2}
Divide \frac{5}{6}, the coefficient of the x term, by 2 to get \frac{5}{12}. Then add the square of \frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
Square \frac{5}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
Add 1 to \frac{25}{144}.
\left(x+\frac{5}{12}\right)^{2}=\frac{169}{144}
Factor x^{2}+\frac{5}{6}x+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Take the square root of both sides of the equation.
x+\frac{5}{12}=\frac{13}{12} x+\frac{5}{12}=-\frac{13}{12}
Simplify.
x=\frac{2}{3} x=-\frac{3}{2}
Subtract \frac{5}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}