Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}=49-18
Subtract 18 from both sides.
6x^{2}=31
Subtract 18 from 49 to get 31.
x^{2}=\frac{31}{6}
Divide both sides by 6.
x=\frac{\sqrt{186}}{6} x=-\frac{\sqrt{186}}{6}
Take the square root of both sides of the equation.
6x^{2}+18-49=0
Subtract 49 from both sides.
6x^{2}-31=0
Subtract 49 from 18 to get -31.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-31\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-31\right)}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\left(-31\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{744}}{2\times 6}
Multiply -24 times -31.
x=\frac{0±2\sqrt{186}}{2\times 6}
Take the square root of 744.
x=\frac{0±2\sqrt{186}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{186}}{6}
Now solve the equation x=\frac{0±2\sqrt{186}}{12} when ± is plus.
x=-\frac{\sqrt{186}}{6}
Now solve the equation x=\frac{0±2\sqrt{186}}{12} when ± is minus.
x=\frac{\sqrt{186}}{6} x=-\frac{\sqrt{186}}{6}
The equation is now solved.