Solve for x (complex solution)
x=-\frac{i\sqrt{10399686}}{3000}\approx -0-1.074951472i
x=\frac{i\sqrt{10399686}}{3000}\approx 1.074951472i
Graph
Share
Copied to clipboard
6x^{2}+6.933124=0
Add 1.98 and 4.953124 to get 6.933124.
6x^{2}=-6.933124
Subtract 6.933124 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-6.933124}{6}
Divide both sides by 6.
x^{2}=\frac{-6933124}{6000000}
Expand \frac{-6.933124}{6} by multiplying both numerator and the denominator by 1000000.
x^{2}=-\frac{1733281}{1500000}
Reduce the fraction \frac{-6933124}{6000000} to lowest terms by extracting and canceling out 4.
x=\frac{\sqrt{10399686}i}{3000} x=-\frac{\sqrt{10399686}i}{3000}
The equation is now solved.
6x^{2}+6.933124=0
Add 1.98 and 4.953124 to get 6.933124.
x=\frac{0±\sqrt{0^{2}-4\times 6\times 6.933124}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and 6.933124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\times 6.933124}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\times 6.933124}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{-166.394976}}{2\times 6}
Multiply -24 times 6.933124.
x=\frac{0±\frac{\sqrt{10399686}i}{250}}{2\times 6}
Take the square root of -166.394976.
x=\frac{0±\frac{\sqrt{10399686}i}{250}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{10399686}i}{3000}
Now solve the equation x=\frac{0±\frac{\sqrt{10399686}i}{250}}{12} when ± is plus.
x=-\frac{\sqrt{10399686}i}{3000}
Now solve the equation x=\frac{0±\frac{\sqrt{10399686}i}{250}}{12} when ± is minus.
x=\frac{\sqrt{10399686}i}{3000} x=-\frac{\sqrt{10399686}i}{3000}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}