Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+6.933124=0
Add 1.98 and 4.953124 to get 6.933124.
6x^{2}=-6.933124
Subtract 6.933124 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-6.933124}{6}
Divide both sides by 6.
x^{2}=\frac{-6933124}{6000000}
Expand \frac{-6.933124}{6} by multiplying both numerator and the denominator by 1000000.
x^{2}=-\frac{1733281}{1500000}
Reduce the fraction \frac{-6933124}{6000000} to lowest terms by extracting and canceling out 4.
x=\frac{\sqrt{10399686}i}{3000} x=-\frac{\sqrt{10399686}i}{3000}
The equation is now solved.
6x^{2}+6.933124=0
Add 1.98 and 4.953124 to get 6.933124.
x=\frac{0±\sqrt{0^{2}-4\times 6\times 6.933124}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and 6.933124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\times 6.933124}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\times 6.933124}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{-166.394976}}{2\times 6}
Multiply -24 times 6.933124.
x=\frac{0±\frac{\sqrt{10399686}i}{250}}{2\times 6}
Take the square root of -166.394976.
x=\frac{0±\frac{\sqrt{10399686}i}{250}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{10399686}i}{3000}
Now solve the equation x=\frac{0±\frac{\sqrt{10399686}i}{250}}{12} when ± is plus.
x=-\frac{\sqrt{10399686}i}{3000}
Now solve the equation x=\frac{0±\frac{\sqrt{10399686}i}{250}}{12} when ± is minus.
x=\frac{\sqrt{10399686}i}{3000} x=-\frac{\sqrt{10399686}i}{3000}
The equation is now solved.