Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(2x+3x^{2}\right)
Factor out 3.
x\left(2+3x\right)
Consider 2x+3x^{2}. Factor out x.
3x\left(3x+2\right)
Rewrite the complete factored expression.
9x^{2}+6x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±6}{2\times 9}
Take the square root of 6^{2}.
x=\frac{-6±6}{18}
Multiply 2 times 9.
x=\frac{0}{18}
Now solve the equation x=\frac{-6±6}{18} when ± is plus. Add -6 to 6.
x=0
Divide 0 by 18.
x=-\frac{12}{18}
Now solve the equation x=\frac{-6±6}{18} when ± is minus. Subtract 6 from -6.
x=-\frac{2}{3}
Reduce the fraction \frac{-12}{18} to lowest terms by extracting and canceling out 6.
9x^{2}+6x=9x\left(x-\left(-\frac{2}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{2}{3} for x_{2}.
9x^{2}+6x=9x\left(x+\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
9x^{2}+6x=9x\times \frac{3x+2}{3}
Add \frac{2}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
9x^{2}+6x=3x\left(3x+2\right)
Cancel out 3, the greatest common factor in 9 and 3.