Solve for x (complex solution)
x=-\frac{1}{6}+\frac{11}{6}i\approx -0.166666667+1.833333333i
x=-\frac{1}{6}-\frac{11}{6}i\approx -0.166666667-1.833333333i
Graph
Share
Copied to clipboard
18x^{2}+6x+61=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 18\times 61}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 6 for b, and 61 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 18\times 61}}{2\times 18}
Square 6.
x=\frac{-6±\sqrt{36-72\times 61}}{2\times 18}
Multiply -4 times 18.
x=\frac{-6±\sqrt{36-4392}}{2\times 18}
Multiply -72 times 61.
x=\frac{-6±\sqrt{-4356}}{2\times 18}
Add 36 to -4392.
x=\frac{-6±66i}{2\times 18}
Take the square root of -4356.
x=\frac{-6±66i}{36}
Multiply 2 times 18.
x=\frac{-6+66i}{36}
Now solve the equation x=\frac{-6±66i}{36} when ± is plus. Add -6 to 66i.
x=-\frac{1}{6}+\frac{11}{6}i
Divide -6+66i by 36.
x=\frac{-6-66i}{36}
Now solve the equation x=\frac{-6±66i}{36} when ± is minus. Subtract 66i from -6.
x=-\frac{1}{6}-\frac{11}{6}i
Divide -6-66i by 36.
x=-\frac{1}{6}+\frac{11}{6}i x=-\frac{1}{6}-\frac{11}{6}i
The equation is now solved.
18x^{2}+6x+61=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
18x^{2}+6x+61-61=-61
Subtract 61 from both sides of the equation.
18x^{2}+6x=-61
Subtracting 61 from itself leaves 0.
\frac{18x^{2}+6x}{18}=-\frac{61}{18}
Divide both sides by 18.
x^{2}+\frac{6}{18}x=-\frac{61}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{1}{3}x=-\frac{61}{18}
Reduce the fraction \frac{6}{18} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{61}{18}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{61}{18}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{121}{36}
Add -\frac{61}{18} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{6}\right)^{2}=-\frac{121}{36}
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{121}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{6}=\frac{11}{6}i x+\frac{1}{6}=-\frac{11}{6}i
Simplify.
x=-\frac{1}{6}+\frac{11}{6}i x=-\frac{1}{6}-\frac{11}{6}i
Subtract \frac{1}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}