Solve for t
t=\sqrt{10}+2\approx 5.16227766
t=2-\sqrt{10}\approx -1.16227766
Share
Copied to clipboard
6t^{2}-24t+12=48
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6t^{2}-24t+12-48=48-48
Subtract 48 from both sides of the equation.
6t^{2}-24t+12-48=0
Subtracting 48 from itself leaves 0.
6t^{2}-24t-36=0
Subtract 48 from 12.
t=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 6\left(-36\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -24 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-24\right)±\sqrt{576-4\times 6\left(-36\right)}}{2\times 6}
Square -24.
t=\frac{-\left(-24\right)±\sqrt{576-24\left(-36\right)}}{2\times 6}
Multiply -4 times 6.
t=\frac{-\left(-24\right)±\sqrt{576+864}}{2\times 6}
Multiply -24 times -36.
t=\frac{-\left(-24\right)±\sqrt{1440}}{2\times 6}
Add 576 to 864.
t=\frac{-\left(-24\right)±12\sqrt{10}}{2\times 6}
Take the square root of 1440.
t=\frac{24±12\sqrt{10}}{2\times 6}
The opposite of -24 is 24.
t=\frac{24±12\sqrt{10}}{12}
Multiply 2 times 6.
t=\frac{12\sqrt{10}+24}{12}
Now solve the equation t=\frac{24±12\sqrt{10}}{12} when ± is plus. Add 24 to 12\sqrt{10}.
t=\sqrt{10}+2
Divide 24+12\sqrt{10} by 12.
t=\frac{24-12\sqrt{10}}{12}
Now solve the equation t=\frac{24±12\sqrt{10}}{12} when ± is minus. Subtract 12\sqrt{10} from 24.
t=2-\sqrt{10}
Divide 24-12\sqrt{10} by 12.
t=\sqrt{10}+2 t=2-\sqrt{10}
The equation is now solved.
6t^{2}-24t+12=48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6t^{2}-24t+12-12=48-12
Subtract 12 from both sides of the equation.
6t^{2}-24t=48-12
Subtracting 12 from itself leaves 0.
6t^{2}-24t=36
Subtract 12 from 48.
\frac{6t^{2}-24t}{6}=\frac{36}{6}
Divide both sides by 6.
t^{2}+\left(-\frac{24}{6}\right)t=\frac{36}{6}
Dividing by 6 undoes the multiplication by 6.
t^{2}-4t=\frac{36}{6}
Divide -24 by 6.
t^{2}-4t=6
Divide 36 by 6.
t^{2}-4t+\left(-2\right)^{2}=6+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-4t+4=6+4
Square -2.
t^{2}-4t+4=10
Add 6 to 4.
\left(t-2\right)^{2}=10
Factor t^{2}-4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{10}
Take the square root of both sides of the equation.
t-2=\sqrt{10} t-2=-\sqrt{10}
Simplify.
t=\sqrt{10}+2 t=2-\sqrt{10}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}