Solve for t
t=\sqrt{5}\approx 2.236067977
t=-\sqrt{5}\approx -2.236067977
Share
Copied to clipboard
6t^{2}+t^{2}=35
Add t^{2} to both sides.
7t^{2}=35
Combine 6t^{2} and t^{2} to get 7t^{2}.
t^{2}=\frac{35}{7}
Divide both sides by 7.
t^{2}=5
Divide 35 by 7 to get 5.
t=\sqrt{5} t=-\sqrt{5}
Take the square root of both sides of the equation.
6t^{2}-35=-t^{2}
Subtract 35 from both sides.
6t^{2}-35+t^{2}=0
Add t^{2} to both sides.
7t^{2}-35=0
Combine 6t^{2} and t^{2} to get 7t^{2}.
t=\frac{0±\sqrt{0^{2}-4\times 7\left(-35\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and -35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 7\left(-35\right)}}{2\times 7}
Square 0.
t=\frac{0±\sqrt{-28\left(-35\right)}}{2\times 7}
Multiply -4 times 7.
t=\frac{0±\sqrt{980}}{2\times 7}
Multiply -28 times -35.
t=\frac{0±14\sqrt{5}}{2\times 7}
Take the square root of 980.
t=\frac{0±14\sqrt{5}}{14}
Multiply 2 times 7.
t=\sqrt{5}
Now solve the equation t=\frac{0±14\sqrt{5}}{14} when ± is plus.
t=-\sqrt{5}
Now solve the equation t=\frac{0±14\sqrt{5}}{14} when ± is minus.
t=\sqrt{5} t=-\sqrt{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}