Solve for n
n=7
n=-7
Share
Copied to clipboard
6n^{2}+4-298=0
Subtract 298 from both sides.
6n^{2}-294=0
Subtract 298 from 4 to get -294.
n^{2}-49=0
Divide both sides by 6.
\left(n-7\right)\left(n+7\right)=0
Consider n^{2}-49. Rewrite n^{2}-49 as n^{2}-7^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=7 n=-7
To find equation solutions, solve n-7=0 and n+7=0.
6n^{2}=298-4
Subtract 4 from both sides.
6n^{2}=294
Subtract 4 from 298 to get 294.
n^{2}=\frac{294}{6}
Divide both sides by 6.
n^{2}=49
Divide 294 by 6 to get 49.
n=7 n=-7
Take the square root of both sides of the equation.
6n^{2}+4-298=0
Subtract 298 from both sides.
6n^{2}-294=0
Subtract 298 from 4 to get -294.
n=\frac{0±\sqrt{0^{2}-4\times 6\left(-294\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -294 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 6\left(-294\right)}}{2\times 6}
Square 0.
n=\frac{0±\sqrt{-24\left(-294\right)}}{2\times 6}
Multiply -4 times 6.
n=\frac{0±\sqrt{7056}}{2\times 6}
Multiply -24 times -294.
n=\frac{0±84}{2\times 6}
Take the square root of 7056.
n=\frac{0±84}{12}
Multiply 2 times 6.
n=7
Now solve the equation n=\frac{0±84}{12} when ± is plus. Divide 84 by 12.
n=-7
Now solve the equation n=\frac{0±84}{12} when ± is minus. Divide -84 by 12.
n=7 n=-7
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}