Solve for k
k=\frac{-1+\sqrt{71}i}{6}\approx -0.166666667+1.404358296i
k=\frac{-\sqrt{71}i-1}{6}\approx -0.166666667-1.404358296i
Share
Copied to clipboard
6k^{2}+2k+9=-3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6k^{2}+2k+9-\left(-3\right)=-3-\left(-3\right)
Add 3 to both sides of the equation.
6k^{2}+2k+9-\left(-3\right)=0
Subtracting -3 from itself leaves 0.
6k^{2}+2k+12=0
Subtract -3 from 9.
k=\frac{-2±\sqrt{2^{2}-4\times 6\times 12}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 2 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-2±\sqrt{4-4\times 6\times 12}}{2\times 6}
Square 2.
k=\frac{-2±\sqrt{4-24\times 12}}{2\times 6}
Multiply -4 times 6.
k=\frac{-2±\sqrt{4-288}}{2\times 6}
Multiply -24 times 12.
k=\frac{-2±\sqrt{-284}}{2\times 6}
Add 4 to -288.
k=\frac{-2±2\sqrt{71}i}{2\times 6}
Take the square root of -284.
k=\frac{-2±2\sqrt{71}i}{12}
Multiply 2 times 6.
k=\frac{-2+2\sqrt{71}i}{12}
Now solve the equation k=\frac{-2±2\sqrt{71}i}{12} when ± is plus. Add -2 to 2i\sqrt{71}.
k=\frac{-1+\sqrt{71}i}{6}
Divide -2+2i\sqrt{71} by 12.
k=\frac{-2\sqrt{71}i-2}{12}
Now solve the equation k=\frac{-2±2\sqrt{71}i}{12} when ± is minus. Subtract 2i\sqrt{71} from -2.
k=\frac{-\sqrt{71}i-1}{6}
Divide -2-2i\sqrt{71} by 12.
k=\frac{-1+\sqrt{71}i}{6} k=\frac{-\sqrt{71}i-1}{6}
The equation is now solved.
6k^{2}+2k+9=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6k^{2}+2k+9-9=-3-9
Subtract 9 from both sides of the equation.
6k^{2}+2k=-3-9
Subtracting 9 from itself leaves 0.
6k^{2}+2k=-12
Subtract 9 from -3.
\frac{6k^{2}+2k}{6}=-\frac{12}{6}
Divide both sides by 6.
k^{2}+\frac{2}{6}k=-\frac{12}{6}
Dividing by 6 undoes the multiplication by 6.
k^{2}+\frac{1}{3}k=-\frac{12}{6}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
k^{2}+\frac{1}{3}k=-2
Divide -12 by 6.
k^{2}+\frac{1}{3}k+\left(\frac{1}{6}\right)^{2}=-2+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{1}{3}k+\frac{1}{36}=-2+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{1}{3}k+\frac{1}{36}=-\frac{71}{36}
Add -2 to \frac{1}{36}.
\left(k+\frac{1}{6}\right)^{2}=-\frac{71}{36}
Factor k^{2}+\frac{1}{3}k+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{71}{36}}
Take the square root of both sides of the equation.
k+\frac{1}{6}=\frac{\sqrt{71}i}{6} k+\frac{1}{6}=-\frac{\sqrt{71}i}{6}
Simplify.
k=\frac{-1+\sqrt{71}i}{6} k=\frac{-\sqrt{71}i-1}{6}
Subtract \frac{1}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}