Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(2d^{2}-7d\right)
Factor out 3.
d\left(2d-7\right)
Consider 2d^{2}-7d. Factor out d.
3d\left(2d-7\right)
Rewrite the complete factored expression.
6d^{2}-21d=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
d=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-21\right)±21}{2\times 6}
Take the square root of \left(-21\right)^{2}.
d=\frac{21±21}{2\times 6}
The opposite of -21 is 21.
d=\frac{21±21}{12}
Multiply 2 times 6.
d=\frac{42}{12}
Now solve the equation d=\frac{21±21}{12} when ± is plus. Add 21 to 21.
d=\frac{7}{2}
Reduce the fraction \frac{42}{12} to lowest terms by extracting and canceling out 6.
d=\frac{0}{12}
Now solve the equation d=\frac{21±21}{12} when ± is minus. Subtract 21 from 21.
d=0
Divide 0 by 12.
6d^{2}-21d=6\left(d-\frac{7}{2}\right)d
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{2} for x_{1} and 0 for x_{2}.
6d^{2}-21d=6\times \frac{2d-7}{2}d
Subtract \frac{7}{2} from d by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6d^{2}-21d=3\left(2d-7\right)d
Cancel out 2, the greatest common factor in 6 and 2.