Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\left(b^{3}-4b+b^{2}-4\right)
Factor out 6.
b\left(b^{2}-4\right)+b^{2}-4
Consider b^{3}-4b+b^{2}-4. Do the grouping b^{3}-4b+b^{2}-4=\left(b^{3}-4b\right)+\left(b^{2}-4\right), and factor out b in b^{3}-4b.
\left(b^{2}-4\right)\left(b+1\right)
Factor out common term b^{2}-4 by using distributive property.
\left(b-2\right)\left(b+2\right)
Consider b^{2}-4. Rewrite b^{2}-4 as b^{2}-2^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
6\left(b-2\right)\left(b+2\right)\left(b+1\right)
Rewrite the complete factored expression.