Factor
3\left(b-5\right)\left(2b+1\right)
Evaluate
3\left(b-5\right)\left(2b+1\right)
Share
Copied to clipboard
3\left(2b^{2}-9b-5\right)
Factor out 3.
p+q=-9 pq=2\left(-5\right)=-10
Consider 2b^{2}-9b-5. Factor the expression by grouping. First, the expression needs to be rewritten as 2b^{2}+pb+qb-5. To find p and q, set up a system to be solved.
1,-10 2,-5
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -10.
1-10=-9 2-5=-3
Calculate the sum for each pair.
p=-10 q=1
The solution is the pair that gives sum -9.
\left(2b^{2}-10b\right)+\left(b-5\right)
Rewrite 2b^{2}-9b-5 as \left(2b^{2}-10b\right)+\left(b-5\right).
2b\left(b-5\right)+b-5
Factor out 2b in 2b^{2}-10b.
\left(b-5\right)\left(2b+1\right)
Factor out common term b-5 by using distributive property.
3\left(b-5\right)\left(2b+1\right)
Rewrite the complete factored expression.
6b^{2}-27b-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 6\left(-15\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-27\right)±\sqrt{729-4\times 6\left(-15\right)}}{2\times 6}
Square -27.
b=\frac{-\left(-27\right)±\sqrt{729-24\left(-15\right)}}{2\times 6}
Multiply -4 times 6.
b=\frac{-\left(-27\right)±\sqrt{729+360}}{2\times 6}
Multiply -24 times -15.
b=\frac{-\left(-27\right)±\sqrt{1089}}{2\times 6}
Add 729 to 360.
b=\frac{-\left(-27\right)±33}{2\times 6}
Take the square root of 1089.
b=\frac{27±33}{2\times 6}
The opposite of -27 is 27.
b=\frac{27±33}{12}
Multiply 2 times 6.
b=\frac{60}{12}
Now solve the equation b=\frac{27±33}{12} when ± is plus. Add 27 to 33.
b=5
Divide 60 by 12.
b=-\frac{6}{12}
Now solve the equation b=\frac{27±33}{12} when ± is minus. Subtract 33 from 27.
b=-\frac{1}{2}
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
6b^{2}-27b-15=6\left(b-5\right)\left(b-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -\frac{1}{2} for x_{2}.
6b^{2}-27b-15=6\left(b-5\right)\left(b+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6b^{2}-27b-15=6\left(b-5\right)\times \frac{2b+1}{2}
Add \frac{1}{2} to b by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6b^{2}-27b-15=3\left(b-5\right)\left(2b+1\right)
Cancel out 2, the greatest common factor in 6 and 2.
x ^ 2 -\frac{9}{2}x -\frac{5}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = \frac{9}{2} rs = -\frac{5}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{4} - u s = \frac{9}{4} + u
Two numbers r and s sum up to \frac{9}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{9}{2} = \frac{9}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{4} - u) (\frac{9}{4} + u) = -\frac{5}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{2}
\frac{81}{16} - u^2 = -\frac{5}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{2}-\frac{81}{16} = -\frac{121}{16}
Simplify the expression by subtracting \frac{81}{16} on both sides
u^2 = \frac{121}{16} u = \pm\sqrt{\frac{121}{16}} = \pm \frac{11}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{4} - \frac{11}{4} = -0.500 s = \frac{9}{4} + \frac{11}{4} = 5
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}