Solve for a
a=\frac{5\left(t-5\right)}{6}
Solve for t
t=\frac{6a}{5}+5
Share
Copied to clipboard
6a-3t+15=2\left(t-5\right)
Use the distributive property to multiply -3 by t-5.
6a-3t+15=2t-10
Use the distributive property to multiply 2 by t-5.
6a+15=2t-10+3t
Add 3t to both sides.
6a+15=5t-10
Combine 2t and 3t to get 5t.
6a=5t-10-15
Subtract 15 from both sides.
6a=5t-25
Subtract 15 from -10 to get -25.
\frac{6a}{6}=\frac{5t-25}{6}
Divide both sides by 6.
a=\frac{5t-25}{6}
Dividing by 6 undoes the multiplication by 6.
6a-3t+15=2\left(t-5\right)
Use the distributive property to multiply -3 by t-5.
6a-3t+15=2t-10
Use the distributive property to multiply 2 by t-5.
6a-3t+15-2t=-10
Subtract 2t from both sides.
6a-5t+15=-10
Combine -3t and -2t to get -5t.
-5t+15=-10-6a
Subtract 6a from both sides.
-5t=-10-6a-15
Subtract 15 from both sides.
-5t=-25-6a
Subtract 15 from -10 to get -25.
-5t=-6a-25
The equation is in standard form.
\frac{-5t}{-5}=\frac{-6a-25}{-5}
Divide both sides by -5.
t=\frac{-6a-25}{-5}
Dividing by -5 undoes the multiplication by -5.
t=\frac{6a}{5}+5
Divide -25-6a by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}