Factor
3a\left(a-2b\right)\left(2a+1\right)\left(a+2b\right)
Evaluate
3a\left(2a+1\right)\left(a^{2}-4b^{2}\right)
Quiz
Algebra
5 problems similar to:
6 a ^ { 4 } - 24 a ^ { 2 } b ^ { 2 } + 3 a ^ { 3 } - 12 a b ^ { 2 }
Share
Copied to clipboard
3\left(2a^{4}-8a^{2}b^{2}+a^{3}-4ab^{2}\right)
Factor out 3.
a\left(2a^{3}-8ab^{2}+a^{2}-4b^{2}\right)
Consider 2a^{4}-8a^{2}b^{2}+a^{3}-4ab^{2}. Factor out a.
2a\left(a^{2}-4b^{2}\right)+a^{2}-4b^{2}
Consider 2a^{3}-8ab^{2}+a^{2}-4b^{2}. Do the grouping 2a^{3}-8ab^{2}+a^{2}-4b^{2}=\left(2a^{3}-8ab^{2}\right)+\left(a^{2}-4b^{2}\right), and factor out 2a in 2a^{3}-8ab^{2}.
\left(a^{2}-4b^{2}\right)\left(2a+1\right)
Factor out common term a^{2}-4b^{2} by using distributive property.
\left(a-2b\right)\left(a+2b\right)
Consider a^{2}-4b^{2}. Rewrite a^{2}-4b^{2} as a^{2}-\left(2b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
3a\left(a-2b\right)\left(a+2b\right)\left(2a+1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}