Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(2a^{4}-8a^{2}b^{2}+a^{3}-4ab^{2}\right)
Factor out 3.
a\left(2a^{3}-8ab^{2}+a^{2}-4b^{2}\right)
Consider 2a^{4}-8a^{2}b^{2}+a^{3}-4ab^{2}. Factor out a.
2a\left(a^{2}-4b^{2}\right)+a^{2}-4b^{2}
Consider 2a^{3}-8ab^{2}+a^{2}-4b^{2}. Do the grouping 2a^{3}-8ab^{2}+a^{2}-4b^{2}=\left(2a^{3}-8ab^{2}\right)+\left(a^{2}-4b^{2}\right), and factor out 2a in 2a^{3}-8ab^{2}.
\left(a^{2}-4b^{2}\right)\left(2a+1\right)
Factor out common term a^{2}-4b^{2} by using distributive property.
\left(a-2b\right)\left(a+2b\right)
Consider a^{2}-4b^{2}. Rewrite a^{2}-4b^{2} as a^{2}-\left(2b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
3a\left(a-2b\right)\left(a+2b\right)\left(2a+1\right)
Rewrite the complete factored expression.