Solve for a
a=\frac{-2n-7}{3}
Solve for n
n=\frac{-3a-7}{2}
Share
Copied to clipboard
6a=-14-4n
Subtract 4n from both sides.
6a=-4n-14
The equation is in standard form.
\frac{6a}{6}=\frac{-4n-14}{6}
Divide both sides by 6.
a=\frac{-4n-14}{6}
Dividing by 6 undoes the multiplication by 6.
a=\frac{-2n-7}{3}
Divide -14-4n by 6.
4n=-14-6a
Subtract 6a from both sides.
4n=-6a-14
The equation is in standard form.
\frac{4n}{4}=\frac{-6a-14}{4}
Divide both sides by 4.
n=\frac{-6a-14}{4}
Dividing by 4 undoes the multiplication by 4.
n=\frac{-3a-7}{2}
Divide -14-6a by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}