Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 6}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 6}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-24}}{2}
Multiply -4 times 6.
x=\frac{-\left(-6\right)±\sqrt{12}}{2}
Add 36 to -24.
x=\frac{-\left(-6\right)±2\sqrt{3}}{2}
Take the square root of 12.
x=\frac{6±2\sqrt{3}}{2}
The opposite of -6 is 6.
x=\frac{2\sqrt{3}+6}{2}
Now solve the equation x=\frac{6±2\sqrt{3}}{2} when ± is plus. Add 6 to 2\sqrt{3}.
x=\sqrt{3}+3
Divide 6+2\sqrt{3} by 2.
x=\frac{6-2\sqrt{3}}{2}
Now solve the equation x=\frac{6±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 6.
x=3-\sqrt{3}
Divide 6-2\sqrt{3} by 2.
x^{2}-6x+6=\left(x-\left(\sqrt{3}+3\right)\right)\left(x-\left(3-\sqrt{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3+\sqrt{3} for x_{1} and 3-\sqrt{3} for x_{2}.