Factor
\left(n-3\right)\left(n-2\right)
Evaluate
\left(n-3\right)\left(n-2\right)
Share
Copied to clipboard
n^{2}-5n+6
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-5 ab=1\times 6=6
Factor the expression by grouping. First, the expression needs to be rewritten as n^{2}+an+bn+6. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-3 b=-2
The solution is the pair that gives sum -5.
\left(n^{2}-3n\right)+\left(-2n+6\right)
Rewrite n^{2}-5n+6 as \left(n^{2}-3n\right)+\left(-2n+6\right).
n\left(n-3\right)-2\left(n-3\right)
Factor out n in the first and -2 in the second group.
\left(n-3\right)\left(n-2\right)
Factor out common term n-3 by using distributive property.
n^{2}-5n+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2}
Square -5.
n=\frac{-\left(-5\right)±\sqrt{25-24}}{2}
Multiply -4 times 6.
n=\frac{-\left(-5\right)±\sqrt{1}}{2}
Add 25 to -24.
n=\frac{-\left(-5\right)±1}{2}
Take the square root of 1.
n=\frac{5±1}{2}
The opposite of -5 is 5.
n=\frac{6}{2}
Now solve the equation n=\frac{5±1}{2} when ± is plus. Add 5 to 1.
n=3
Divide 6 by 2.
n=\frac{4}{2}
Now solve the equation n=\frac{5±1}{2} when ± is minus. Subtract 1 from 5.
n=2
Divide 4 by 2.
n^{2}-5n+6=\left(n-3\right)\left(n-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 2 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}