Solve for k
k=-\frac{8}{9}\approx -0.888888889
Share
Copied to clipboard
6-2k=2\left(\frac{8}{9}+\frac{27}{9}\right)
Convert 3 to fraction \frac{27}{9}.
6-2k=2\times \frac{8+27}{9}
Since \frac{8}{9} and \frac{27}{9} have the same denominator, add them by adding their numerators.
6-2k=2\times \frac{35}{9}
Add 8 and 27 to get 35.
6-2k=\frac{2\times 35}{9}
Express 2\times \frac{35}{9} as a single fraction.
6-2k=\frac{70}{9}
Multiply 2 and 35 to get 70.
-2k=\frac{70}{9}-6
Subtract 6 from both sides.
-2k=\frac{70}{9}-\frac{54}{9}
Convert 6 to fraction \frac{54}{9}.
-2k=\frac{70-54}{9}
Since \frac{70}{9} and \frac{54}{9} have the same denominator, subtract them by subtracting their numerators.
-2k=\frac{16}{9}
Subtract 54 from 70 to get 16.
k=\frac{\frac{16}{9}}{-2}
Divide both sides by -2.
k=\frac{16}{9\left(-2\right)}
Express \frac{\frac{16}{9}}{-2} as a single fraction.
k=\frac{16}{-18}
Multiply 9 and -2 to get -18.
k=-\frac{8}{9}
Reduce the fraction \frac{16}{-18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}