Evaluate
-\frac{3\sqrt{3}}{2}+6-\sqrt{6}\approx 0.952434046
Factor
\frac{12 - 2 \sqrt{6} - 3 \sqrt{3}}{2} = 0.9524340458635061
Quiz
Arithmetic
5 problems similar to:
6 - 2 \sqrt { \frac { 3 } { 2 } } - 3 \frac { \sqrt { 3 } } { 2 }
Share
Copied to clipboard
6-2\times \frac{\sqrt{3}}{\sqrt{2}}-3\times \frac{\sqrt{3}}{2}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
6-2\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\times \frac{\sqrt{3}}{2}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
6-2\times \frac{\sqrt{3}\sqrt{2}}{2}-3\times \frac{\sqrt{3}}{2}
The square of \sqrt{2} is 2.
6-2\times \frac{\sqrt{6}}{2}-3\times \frac{\sqrt{3}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
6-\sqrt{6}-3\times \frac{\sqrt{3}}{2}
Cancel out 2 and 2.
6-\sqrt{6}-\frac{3\sqrt{3}}{2}
Express 3\times \frac{\sqrt{3}}{2} as a single fraction.
\frac{2\left(6-\sqrt{6}\right)}{2}-\frac{3\sqrt{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6-\sqrt{6} times \frac{2}{2}.
\frac{2\left(6-\sqrt{6}\right)-3\sqrt{3}}{2}
Since \frac{2\left(6-\sqrt{6}\right)}{2} and \frac{3\sqrt{3}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{12-2\sqrt{6}-3\sqrt{3}}{2}
Do the multiplications in 2\left(6-\sqrt{6}\right)-3\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}