Evaluate
-\frac{6t\left(10-t\right)^{2}}{125}+6
Expand
-\frac{6t^{3}}{125}+\frac{24t^{2}}{25}-\frac{24t}{5}+6
Quiz
Polynomial
5 problems similar to:
6 - \frac { 3 t } { 50 } ( 8 - \frac { 4 } { 5 } t ) ( 10 - t )
Share
Copied to clipboard
6-\frac{3t\left(10-t\right)}{50}\left(8-\frac{4}{5}t\right)
Express \frac{3t}{50}\left(10-t\right) as a single fraction.
6-\left(8\times \frac{3t\left(10-t\right)}{50}+\frac{3t\left(10-t\right)}{50}\left(-\frac{4}{5}\right)t\right)
Use the distributive property to multiply \frac{3t\left(10-t\right)}{50} by 8-\frac{4}{5}t.
6-\left(8\times \frac{30t-3t^{2}}{50}+\frac{3t\left(10-t\right)}{50}\left(-\frac{4}{5}\right)t\right)
Use the distributive property to multiply 3t by 10-t.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{3t\left(10-t\right)}{50}\left(-\frac{4}{5}\right)t\right)
Express 8\times \frac{30t-3t^{2}}{50} as a single fraction.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{30t-3t^{2}}{50}\left(-\frac{4}{5}\right)t\right)
Use the distributive property to multiply 3t by 10-t.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{-\left(30t-3t^{2}\right)\times 4}{50\times 5}t\right)
Multiply \frac{30t-3t^{2}}{50} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{-2\left(-3t^{2}+30t\right)}{5\times 25}t\right)
Cancel out 2 in both numerator and denominator.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{-2\left(-3t^{2}+30t\right)t}{5\times 25}\right)
Express \frac{-2\left(-3t^{2}+30t\right)}{5\times 25}t as a single fraction.
6-\left(\frac{5\times 8\left(30t-3t^{2}\right)}{250}+\frac{2\left(-1\right)\times 2\left(-3t^{2}+30t\right)t}{250}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 50 and 5\times 25 is 250. Multiply \frac{8\left(30t-3t^{2}\right)}{50} times \frac{5}{5}. Multiply \frac{-2\left(-3t^{2}+30t\right)t}{5\times 25} times \frac{2}{2}.
6-\frac{5\times 8\left(30t-3t^{2}\right)+2\left(-1\right)\times 2\left(-3t^{2}+30t\right)t}{250}
Since \frac{5\times 8\left(30t-3t^{2}\right)}{250} and \frac{2\left(-1\right)\times 2\left(-3t^{2}+30t\right)t}{250} have the same denominator, add them by adding their numerators.
6-\frac{1200t-120t^{2}+12t^{3}-120t^{2}}{250}
Do the multiplications in 5\times 8\left(30t-3t^{2}\right)+2\left(-1\right)\times 2\left(-3t^{2}+30t\right)t.
6-\frac{1200t-240t^{2}+12t^{3}}{250}
Combine like terms in 1200t-120t^{2}+12t^{3}-120t^{2}.
\frac{6\times 250}{250}-\frac{1200t-240t^{2}+12t^{3}}{250}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{250}{250}.
\frac{6\times 250-\left(1200t-240t^{2}+12t^{3}\right)}{250}
Since \frac{6\times 250}{250} and \frac{1200t-240t^{2}+12t^{3}}{250} have the same denominator, subtract them by subtracting their numerators.
\frac{1500-1200t+240t^{2}-12t^{3}}{250}
Do the multiplications in 6\times 250-\left(1200t-240t^{2}+12t^{3}\right).
6-\frac{3t\left(10-t\right)}{50}\left(8-\frac{4}{5}t\right)
Express \frac{3t}{50}\left(10-t\right) as a single fraction.
6-\left(8\times \frac{3t\left(10-t\right)}{50}+\frac{3t\left(10-t\right)}{50}\left(-\frac{4}{5}\right)t\right)
Use the distributive property to multiply \frac{3t\left(10-t\right)}{50} by 8-\frac{4}{5}t.
6-\left(8\times \frac{30t-3t^{2}}{50}+\frac{3t\left(10-t\right)}{50}\left(-\frac{4}{5}\right)t\right)
Use the distributive property to multiply 3t by 10-t.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{3t\left(10-t\right)}{50}\left(-\frac{4}{5}\right)t\right)
Express 8\times \frac{30t-3t^{2}}{50} as a single fraction.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{30t-3t^{2}}{50}\left(-\frac{4}{5}\right)t\right)
Use the distributive property to multiply 3t by 10-t.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{-\left(30t-3t^{2}\right)\times 4}{50\times 5}t\right)
Multiply \frac{30t-3t^{2}}{50} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{-2\left(-3t^{2}+30t\right)}{5\times 25}t\right)
Cancel out 2 in both numerator and denominator.
6-\left(\frac{8\left(30t-3t^{2}\right)}{50}+\frac{-2\left(-3t^{2}+30t\right)t}{5\times 25}\right)
Express \frac{-2\left(-3t^{2}+30t\right)}{5\times 25}t as a single fraction.
6-\left(\frac{5\times 8\left(30t-3t^{2}\right)}{250}+\frac{2\left(-1\right)\times 2\left(-3t^{2}+30t\right)t}{250}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 50 and 5\times 25 is 250. Multiply \frac{8\left(30t-3t^{2}\right)}{50} times \frac{5}{5}. Multiply \frac{-2\left(-3t^{2}+30t\right)t}{5\times 25} times \frac{2}{2}.
6-\frac{5\times 8\left(30t-3t^{2}\right)+2\left(-1\right)\times 2\left(-3t^{2}+30t\right)t}{250}
Since \frac{5\times 8\left(30t-3t^{2}\right)}{250} and \frac{2\left(-1\right)\times 2\left(-3t^{2}+30t\right)t}{250} have the same denominator, add them by adding their numerators.
6-\frac{1200t-120t^{2}+12t^{3}-120t^{2}}{250}
Do the multiplications in 5\times 8\left(30t-3t^{2}\right)+2\left(-1\right)\times 2\left(-3t^{2}+30t\right)t.
6-\frac{1200t-240t^{2}+12t^{3}}{250}
Combine like terms in 1200t-120t^{2}+12t^{3}-120t^{2}.
\frac{6\times 250}{250}-\frac{1200t-240t^{2}+12t^{3}}{250}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{250}{250}.
\frac{6\times 250-\left(1200t-240t^{2}+12t^{3}\right)}{250}
Since \frac{6\times 250}{250} and \frac{1200t-240t^{2}+12t^{3}}{250} have the same denominator, subtract them by subtracting their numerators.
\frac{1500-1200t+240t^{2}-12t^{3}}{250}
Do the multiplications in 6\times 250-\left(1200t-240t^{2}+12t^{3}\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}